@@ -218,7 +218,7 @@ def ProximalGradient(proxf, proxg, x0, tau=None, beta=0.5,
218218 'niterback = %d\t acceleration = %s\n ' % (type (proxf ), type (proxg ),
219219 'Adaptive' if tau is None else str (tau ), beta ,
220220 epsg_print , niter , niterback , acceleration ))
221- head = ' Itn x[0] f g J=f+eps*g'
221+ head = ' Itn x[0] f g J=f+eps*g tau '
222222 print (head )
223223
224224 backtracking = False
@@ -267,7 +267,8 @@ def ProximalGradient(proxf, proxg, x0, tau=None, beta=0.5,
267267 msg = '%6g %12.5e %10.3e %10.3e %10.3e' % \
268268 (iiter + 1 , np .real (to_numpy (x [0 ])) if x .ndim == 1 else np .real (to_numpy (x [0 , 0 ])),
269269 pf , pg [0 ] if epsg_print == 'Multi' else pg ,
270- pf + np .sum (epsg * pg ))
270+ pf + np .sum (epsg * pg ),
271+ tau )
271272 print (msg )
272273 if show :
273274 print ('\n Total time (s) = %.2f' % (time .time () - tstart ))
@@ -401,8 +402,8 @@ def GeneralizedProximalGradient(proxfs, proxgs, x0, tau=None,
401402 sol = np .zeros_like (x )
402403 for i , proxg in enumerate (proxgs ):
403404 tmp = 2 * y - zs [i ] - tau * grad
404- tmp [:] = proxg .prox (tmp , tau * len (proxgs ) )
405- zs [i ] += epsg * (tmp - y )
405+ tmp [:] = proxg .prox (tmp , epsg * tau * len (proxgs ) )
406+ zs [i ] += (tmp - y )
406407 sol += zs [i ] / len (proxgs )
407408 x [:] = sol .copy ()
408409
0 commit comments