@@ -12,7 +12,7 @@ class _Denoise(ProxOperator):
1212 denoiser : :obj:`func`
1313 Denoiser (must be a function with two inputs, the first is the signal
1414 to be denoised, the second is the `tau` constant of the y-update in
15- the ADMM optimization
15+ the PnP optimization
1616 dims : :obj:`tuple`
1717 Dimensions used to reshape the vector ``x`` in the ``prox`` method
1818 prior to calling the ``denoiser``
@@ -64,24 +64,13 @@ def PlugAndPlay(proxf, denoiser, dims, x0, solver=ADMM, **kwargs_solver):
6464 Initial vector
6565 solver : :func:`pyproximal.optimization.primal` or :func:`pyproximal.optimization.primaldual`
6666 Solver of choice
67- tau : :obj:`float`, optional
68- Positive scalar weight, which should satisfy the following condition
69- to guarantees convergence: :math:`\tau \in (0, 1/L]` where ``L`` is
70- the Lipschitz constant of :math:`\nabla f`.
71- niter : :obj:`int`, optional
72- Number of iterations of iterative scheme
73- callback : :obj:`callable`, optional
74- Function with signature (``callback(x)``) to call after each iteration
75- where ``x`` is the current model vector
76- show : :obj:`bool`, optional
77- Display iterations log
67+ kwargs_solver : :obj:`dict`
68+ Additonal parameters required by the selected solver
7869
7970 Returns
8071 -------
81- x : :obj:`numpy.ndarray`
82- Inverted model
83- z : :obj:`numpy.ndarray`
84- Inverted second model
72+ out : :obj:`numpy.ndarray` or :obj:`tuple`
73+ Output of the solver of choice
8574
8675 Notes
8776 -----
0 commit comments