@@ -1020,15 +1020,15 @@ rule prepare_st_low_res_network:
10201020 ),
10211021 input :
10221022 network = RESULTS
1023- + "networks/base_s_{clusters}_{opts}_{sector_opts}_{st_years }.nc" ,
1023+ + "networks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }.nc" ,
10241024 output :
10251025 st_low_res_prenetwork = RESULTS
1026- + "st_low_res_prenetworks/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}.nc" ,
1026+ + "st_low_res_prenetworks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}.nc" ,
10271027 resources :
10281028 mem_mb = 16000 ,
10291029 log :
10301030 RESULTS
1031- + "logs/st_low_res_prenetwork_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}.log" ,
1031+ + "logs/st_low_res_prenetwork_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}.log" ,
10321032 script :
10331033 "scripts/pypsa-de/prepare_st_low_res_network.py"
10341034
@@ -1042,21 +1042,21 @@ rule solve_st_low_res_network:
10421042 custom_extra_functionality = input_custom_extra_functionality ,
10431043 input :
10441044 st_low_res_prenetwork = RESULTS
1045- + "st_low_res_prenetworks/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}.nc" ,
1045+ + "st_low_res_prenetworks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}.nc" ,
10461046 co2_totals_name = resources ("co2_totals.csv" ),
10471047 energy_totals = resources ("energy_totals.csv" ),
10481048 output :
10491049 st_low_res_network = RESULTS
1050- + "st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}.nc" ,
1050+ + "st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}.nc" ,
10511051 shadow :
10521052 shadow_config
10531053 log :
10541054 solver = RESULTS
1055- + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}_solver.log" ,
1055+ + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}_solver.log" ,
10561056 memory = RESULTS
1057- + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}_memory.log" ,
1057+ + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}_memory.log" ,
10581058 python = RESULTS
1059- + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}_python.log" ,
1059+ + "logs/st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}_python.log" ,
10601060 threads : solver_threads
10611061 resources :
10621062 mem_mb = config_provider ("solving" , "mem_mb" ),
@@ -1102,9 +1102,11 @@ use rule export_ariadne_variables as export_st_variables with:
11021102 energy_totals = resources ("energy_totals.csv" ),
11031103 st_low_res_networks = expand (
11041104 RESULTS
1105- + "st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{st_years }_eeg_level_{eeg_level}.nc" ,
1105+ + "st_low_res_networks/{sensitivity}/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year }_eeg_level_{eeg_level}.nc" ,
11061106 ** config ["scenario" ],
1107- st_years = config_provider ("iiasa_database" , "regret_run" , "st_years" ),
1107+ eeg_sweep_year = config_provider (
1108+ "iiasa_database" , "regret_run" , "eeg_sweep_year"
1109+ ),
11081110 allow_missing = True ,
11091111 ),
11101112 output :
@@ -1128,6 +1130,111 @@ rule st_all:
11281130 ),
11291131
11301132
1133+ rule solve_eeg_sweep_lt :
1134+ params :
1135+ solving = config_provider ("solving" ),
1136+ foresight = config_provider ("foresight" ),
1137+ co2_sequestration_potential = config_provider (
1138+ "sector" , "co2_sequestration_potential" , default = 200
1139+ ),
1140+ custom_extra_functionality = input_custom_extra_functionality ,
1141+ energy_year = config_provider ("energy" , "energy_totals_year" ),
1142+ input :
1143+ network = resources (
1144+ "networks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_final.nc"
1145+ ),
1146+ co2_totals_name = resources ("co2_totals.csv" ),
1147+ energy_totals = resources ("energy_totals.csv" ),
1148+ output :
1149+ network = RESULTS
1150+ + "networks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}.nc" ,
1151+ config = RESULTS
1152+ + "configs/config.base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}.yaml" ,
1153+ shadow :
1154+ shadow_config
1155+ log :
1156+ solver = RESULTS
1157+ + "logs/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}_solver.log" ,
1158+ memory = RESULTS
1159+ + "logs/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}_memory.log" ,
1160+ python = RESULTS
1161+ + "logs/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}_python.log" ,
1162+ threads : solver_threads
1163+ resources :
1164+ mem_mb = config_provider ("solving" , "mem_mb" ),
1165+ runtime = config_provider ("solving" , "runtime" , default = "6h" ),
1166+ benchmark :
1167+ (
1168+ RESULTS
1169+ + "benchmarks/solve_sector_network/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}"
1170+ )
1171+ conda :
1172+ "envs/environment.yaml"
1173+ script :
1174+ "scripts/solve_network.py"
1175+
1176+
1177+ use rule export_ariadne_variables as export_eeg_sweep_lt_variables with :
1178+ input :
1179+ template = "data/template_ariadne_database.xlsx" ,
1180+ industry_demands = expand (
1181+ resources (
1182+ "industrial_energy_demand_base_s_{clusters}_{planning_horizons}.csv"
1183+ ),
1184+ ** config ["scenario" ],
1185+ allow_missing = True ,
1186+ ),
1187+ networks = expand (
1188+ RESULTS
1189+ + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ,
1190+ ** config ["scenario" ],
1191+ allow_missing = True ,
1192+ ),
1193+ costs = expand (
1194+ resources ("costs_{planning_horizons}.csv" ),
1195+ ** config ["scenario" ],
1196+ allow_missing = True ,
1197+ ),
1198+ industrial_production_per_country_tomorrow = expand (
1199+ resources (
1200+ "industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"
1201+ ),
1202+ ** config ["scenario" ],
1203+ allow_missing = True ,
1204+ ),
1205+ industry_sector_ratios = expand (
1206+ resources ("industry_sector_ratios_{planning_horizons}.csv" ),
1207+ ** config ["scenario" ],
1208+ allow_missing = True ,
1209+ ),
1210+ industrial_production = resources ("industrial_production_per_country.csv" ),
1211+ energy_totals = resources ("energy_totals.csv" ),
1212+ eeg_sweep_networks = expand (
1213+ RESULTS
1214+ + "networks/base_s_{clusters}_{opts}_{sector_opts}_{eeg_sweep_year}_EEG_{eeg_level}.nc" ,
1215+ ** config ["scenario" ],
1216+ eeg_sweep_year = config_provider (
1217+ "iiasa_database" , "regret_run" , "eeg_sweep_year"
1218+ ),
1219+ allow_missing = True ,
1220+ ),
1221+ output :
1222+ exported_variables = RESULTS + "ariadne/exported_variables_EEG_{eeg_level}.xlsx" ,
1223+ exported_variables_full = RESULTS
1224+ + "ariadne/exported_variables_full_EEG_{eeg_level}.xlsx" ,
1225+ log :
1226+ RESULTS + "logs/export_ariadne_variables_EEG_{eeg_level}.log" ,
1227+
1228+
1229+ rule eeg_sweep :
1230+ input :
1231+ expand (
1232+ RESULTS + "ariadne/exported_variables_full_EEG_{eeg_level}.xlsx" ,
1233+ eeg_level = config_provider ("iiasa_database" , "regret_run" , "EEG_levels" ),
1234+ run = config_provider ("run" , "name" ),
1235+ ),
1236+
1237+
11311238rule prepare_regret_network :
11321239 params :
11331240 solving = config_provider ("solving" ),
0 commit comments