55# for 3D medical image segmentation. The residual connections help with
66# gradient flow and improve performance over standard U-Net.
77
8- experiment_name : lucchi++_monai_unet
8+ experiment_name : monai2d_worm # Will be overridden by YAML filename
99description : Mitochondria segmentation on Lucchi++ EM dataset using MONAI Residual UNet
1010
1111# System
4747# Data - Using automatic 80/20 train/val split (DeepEM-style)
4848data :
4949 # Volume configuration
50- train_image : datasets/Lucchi++/train_im.h5
51- train_label : datasets/Lucchi++/train_mito.h5
50+ train_image : /projects/weilab/shenb/PyTC/ datasets/Dataset001_worm_image96/imagesTr/Image96_00001_0000.tif
51+ train_label : /projects/weilab/shenb/PyTC/ datasets/Dataset001_worm_image96/labelsTr/Image96_00001.tif
5252 train_resolution : [5, 5] # Lucchi EM: 5nm isotropic resolution
5353 use_preloaded_cache : true # Load volumes into memory for fast training
5454
6060
6161 # Image normalization
6262 image_transform :
63- resize : [0.25, 0.25 ] # Resize to 1/4 of original size (bilinear for images )
63+ resize : [512, 512 ] # Resize to fixed dimensions (512x512 )
6464 normalize : " 0-1" # Min-max normalization to [0, 1]
6565 clip_percentile_low : 0.0 # No clipping
6666 clip_percentile_high : 1.0
@@ -118,7 +118,7 @@ monitor:
118118 save_top_k : 1
119119 save_last : true
120120 save_every_n_epochs : 10
121- dirpath : outputs/lucchi++_monai_unet /checkpoints/
121+ dirpath : checkpoints/ # Will be dynamically set to outputs/{yaml_filename}/YYYYMMDD_HHMMSS /checkpoints/
122122 # checkpoint_filename: auto-generated from monitor metric (epoch={epoch:03d}-{monitor}={value:.4f})
123123 use_timestamp : true # Enable timestamped subdirectories (YYYYMMDD_HHMMSS)
124124
@@ -136,16 +136,16 @@ monitor:
136136# Inference - MONAI SlidingWindowInferer
137137inference :
138138 data :
139- test_image : datasets/Lucchi++/test_im.h5
140- test_label : datasets/Lucchi++/test_mito.h5
139+ test_image : /projects/weilab/shenb/PyTC/ datasets/Dataset001_worm_image96/imagesTr/Image96_00002_0000.tif
140+ test_label : /projects/weilab/shenb/PyTC/ datasets/Dataset001_worm_image96/labelsTr/Image96_00002.tif
141141 # test_image: datasets/Lucchi++/train_im.h5
142142 # test_label: datasets/Lucchi++/train_mito.h5
143143 test_resolution : [5, 5]
144- output_path : outputs/lucchi++_monai_unet /results/
144+ output_path : outputs/monai2d_worm /results/
145145
146146 # MONAI SlidingWindowInferer parameters
147147 sliding_window :
148- window_size : [512, 512] # Patch size extracted from volume
148+ window_size : null # Disable sliding window for 2D data (use direct inference)
149149 # sw_batch_size: automatically set from system.inference.batch_size (currently 32)
150150 overlap : 0.5 # 50% overlap between patches
151151 blending : gaussian # Gaussian weighting for smooth blending
0 commit comments