Skip to content

Commit 3f23c4f

Browse files
author
Donglai Wei
committed
update quickstart.sh location
1 parent 0299591 commit 3f23c4f

File tree

2 files changed

+10
-10
lines changed

2 files changed

+10
-10
lines changed

quickstart.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
#
55
# Usage:
66
# bash quickstart.sh
7-
# curl -fsSL https://raw.githubusercontent.com/zudi-lin/pytorch_connectomics/v2.0/quickstart.sh | bash
7+
# curl -fsSL https://raw.githubusercontent.com/zudi-lin/pytorch_connectomics/refs/heads/master/quickstart.sh | bash
88

99
set -e
1010

tutorials/monai2d_worm.yaml

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
# for 3D medical image segmentation. The residual connections help with
66
# gradient flow and improve performance over standard U-Net.
77

8-
experiment_name: lucchi++_monai_unet
8+
experiment_name: monai2d_worm # Will be overridden by YAML filename
99
description: Mitochondria segmentation on Lucchi++ EM dataset using MONAI Residual UNet
1010

1111
# System
@@ -47,8 +47,8 @@ model:
4747
# Data - Using automatic 80/20 train/val split (DeepEM-style)
4848
data:
4949
# Volume configuration
50-
train_image: datasets/Lucchi++/train_im.h5
51-
train_label: datasets/Lucchi++/train_mito.h5
50+
train_image: /projects/weilab/shenb/PyTC/datasets/Dataset001_worm_image96/imagesTr/Image96_00001_0000.tif
51+
train_label: /projects/weilab/shenb/PyTC/datasets/Dataset001_worm_image96/labelsTr/Image96_00001.tif
5252
train_resolution: [5, 5] # Lucchi EM: 5nm isotropic resolution
5353
use_preloaded_cache: true # Load volumes into memory for fast training
5454

@@ -60,7 +60,7 @@ data:
6060

6161
# Image normalization
6262
image_transform:
63-
resize: [0.25, 0.25] # Resize to 1/4 of original size (bilinear for images)
63+
resize: [512, 512] # Resize to fixed dimensions (512x512)
6464
normalize: "0-1" # Min-max normalization to [0, 1]
6565
clip_percentile_low: 0.0 # No clipping
6666
clip_percentile_high: 1.0
@@ -118,7 +118,7 @@ monitor:
118118
save_top_k: 1
119119
save_last: true
120120
save_every_n_epochs: 10
121-
dirpath: outputs/lucchi++_monai_unet/checkpoints/
121+
dirpath: checkpoints/ # Will be dynamically set to outputs/{yaml_filename}/YYYYMMDD_HHMMSS/checkpoints/
122122
# checkpoint_filename: auto-generated from monitor metric (epoch={epoch:03d}-{monitor}={value:.4f})
123123
use_timestamp: true # Enable timestamped subdirectories (YYYYMMDD_HHMMSS)
124124

@@ -136,16 +136,16 @@ monitor:
136136
# Inference - MONAI SlidingWindowInferer
137137
inference:
138138
data:
139-
test_image: datasets/Lucchi++/test_im.h5
140-
test_label: datasets/Lucchi++/test_mito.h5
139+
test_image: /projects/weilab/shenb/PyTC/datasets/Dataset001_worm_image96/imagesTr/Image96_00002_0000.tif
140+
test_label: /projects/weilab/shenb/PyTC/datasets/Dataset001_worm_image96/labelsTr/Image96_00002.tif
141141
#test_image: datasets/Lucchi++/train_im.h5
142142
#test_label: datasets/Lucchi++/train_mito.h5
143143
test_resolution: [5, 5]
144-
output_path: outputs/lucchi++_monai_unet/results/
144+
output_path: outputs/monai2d_worm/results/
145145

146146
# MONAI SlidingWindowInferer parameters
147147
sliding_window:
148-
window_size: [512, 512] # Patch size extracted from volume
148+
window_size: null # Disable sliding window for 2D data (use direct inference)
149149
# sw_batch_size: automatically set from system.inference.batch_size (currently 32)
150150
overlap: 0.5 # 50% overlap between patches
151151
blending: gaussian # Gaussian weighting for smooth blending

0 commit comments

Comments
 (0)