|
| 1 | +// Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 2 | +// not use this file except in compliance with the License. You may obtain |
| 3 | +// a copy of the License at |
| 4 | +// |
| 5 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +// |
| 7 | +// Unless required by applicable law or agreed to in writing, software |
| 8 | +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 9 | +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 10 | +// License for the specific language governing permissions and limitations |
| 11 | +// under the License. |
| 12 | + |
| 13 | +use hashbrown::HashSet; |
| 14 | + |
| 15 | +use petgraph::visit::{IntoEdges, IntoNeighborsDirected, IntoNodeIdentifiers, NodeIndexable}; |
| 16 | +use rayon::prelude::*; |
| 17 | + |
| 18 | +use std::hash::Hash; |
| 19 | + |
| 20 | +/// Counts triangles and connected triples containing `node` of the given undirected graph. |
| 21 | +fn graph_node_triangles<G>(graph: G, node: G::NodeId) -> (usize, usize) |
| 22 | +where |
| 23 | + G: IntoEdges, |
| 24 | + G::NodeId: Hash + Eq, |
| 25 | +{ |
| 26 | + let node_neighbors: HashSet<G::NodeId> = graph.neighbors(node).filter(|v| *v != node).collect(); |
| 27 | + |
| 28 | + let triangles: usize = node_neighbors |
| 29 | + .iter() |
| 30 | + .map(|&v| { |
| 31 | + graph |
| 32 | + .neighbors(v) |
| 33 | + .filter(|&x| (x != v) && node_neighbors.contains(&x)) |
| 34 | + .count() |
| 35 | + }) |
| 36 | + .sum(); |
| 37 | + |
| 38 | + let triples = match node_neighbors.len() { |
| 39 | + 0 => 0, |
| 40 | + d => (d * (d - 1)) / 2, |
| 41 | + }; |
| 42 | + |
| 43 | + (triangles / 2, triples) |
| 44 | +} |
| 45 | + |
| 46 | +/// Compute the transitivity of an undirected graph. |
| 47 | +/// |
| 48 | +/// The transitivity of a graph is 3*number of triangles / number of connected triples, where |
| 49 | +/// “connected triple” means a single vertex with edges running to an unordered pair of others. |
| 50 | +/// |
| 51 | +/// This function is multithreaded and will launch a thread pool with threads equal to the number |
| 52 | +/// of CPUs by default. You can tune the number of threads with the ``RAYON_NUM_THREADS`` |
| 53 | +/// environment variable. For example, setting ``RAYON_NUM_THREADS=4`` would limit the thread pool |
| 54 | +/// to 4 threads. |
| 55 | +/// |
| 56 | +/// The function implicitly assumes that there are no parallel edges or self loops. It may produce |
| 57 | +/// incorrect/unexpected results if the input graph has self loops or parallel edges. |
| 58 | +pub fn graph_transitivity<G>(graph: G) -> f64 |
| 59 | +where |
| 60 | + G: NodeIndexable + IntoEdges + IntoNodeIdentifiers + Send + Sync, |
| 61 | + G::NodeId: Hash + Eq + Send + Sync, |
| 62 | +{ |
| 63 | + let nodes: Vec<_> = graph.node_identifiers().collect(); |
| 64 | + let (triangles, triples) = nodes |
| 65 | + .par_iter() |
| 66 | + .map(|node| graph_node_triangles(graph, *node)) |
| 67 | + .reduce( |
| 68 | + || (0, 0), |
| 69 | + |(sumx, sumy), (resx, resy)| (sumx + resx, sumy + resy), |
| 70 | + ); |
| 71 | + |
| 72 | + match triangles { |
| 73 | + 0 => 0.0, |
| 74 | + _ => triangles as f64 / triples as f64, |
| 75 | + } |
| 76 | +} |
| 77 | + |
| 78 | +/// Counts triangles and triples containing `node` of the given directed graph. |
| 79 | +fn digraph_node_triangles<G>(graph: G, node: G::NodeId) -> (usize, usize) |
| 80 | +where |
| 81 | + G: IntoNeighborsDirected, |
| 82 | + G::NodeId: Hash + Eq, |
| 83 | +{ |
| 84 | + let out_neighbors: HashSet<G::NodeId> = graph |
| 85 | + .neighbors_directed(node, petgraph::Direction::Outgoing) |
| 86 | + .filter(|v| *v != node) |
| 87 | + .collect(); |
| 88 | + |
| 89 | + let in_neighbors: HashSet<G::NodeId> = graph |
| 90 | + .neighbors_directed(node, petgraph::Direction::Incoming) |
| 91 | + .filter(|v| *v != node) |
| 92 | + .collect(); |
| 93 | + |
| 94 | + let triangles: usize = out_neighbors |
| 95 | + .iter() |
| 96 | + .chain(in_neighbors.iter()) |
| 97 | + .map(|v| { |
| 98 | + graph |
| 99 | + .neighbors_directed(*v, petgraph::Direction::Outgoing) |
| 100 | + .chain(graph.neighbors_directed(*v, petgraph::Direction::Incoming)) |
| 101 | + .map(|x| { |
| 102 | + ((x != *v) && out_neighbors.contains(&x)) as usize |
| 103 | + + ((x != *v) && in_neighbors.contains(&x)) as usize |
| 104 | + }) |
| 105 | + .sum::<usize>() |
| 106 | + }) |
| 107 | + .sum(); |
| 108 | + |
| 109 | + let d_tot = in_neighbors.len() + out_neighbors.len(); |
| 110 | + let d_bil = out_neighbors.intersection(&in_neighbors).count(); |
| 111 | + let triples = match d_tot { |
| 112 | + 0 => 0, |
| 113 | + _ => d_tot * (d_tot - 1) - 2 * d_bil, |
| 114 | + }; |
| 115 | + |
| 116 | + (triangles / 2, triples) |
| 117 | +} |
| 118 | + |
| 119 | +/// Compute the transitivity of a directed graph. |
| 120 | +/// |
| 121 | +/// The transitivity of a directed graph is 3*number of triangles/number of all possible triangles. |
| 122 | +/// A triangle is a connected triple of nodes. Different edge orientations counts as different |
| 123 | +/// triangles. |
| 124 | +/// |
| 125 | +/// This function is multithreaded and will launch a thread pool with threads equal to the number |
| 126 | +/// of CPUs by default. You can tune the number of threads with the ``RAYON_NUM_THREADS`` |
| 127 | +/// environment variable. For example, setting ``RAYON_NUM_THREADS=4`` would limit the thread pool |
| 128 | +/// to 4 threads. |
| 129 | +/// |
| 130 | +/// The function implicitly assumes that there are no parallel edges or self loops. It may produce |
| 131 | +/// incorrect/unexpected results if the input graph has self loops or parallel edges. |
| 132 | +pub fn digraph_transitivity<G>(graph: G) -> f64 |
| 133 | +where |
| 134 | + G: NodeIndexable + IntoNodeIdentifiers + IntoNeighborsDirected + Send + Sync, |
| 135 | + G::NodeId: Hash + Eq + Send + Sync, |
| 136 | +{ |
| 137 | + let nodes: Vec<_> = graph.node_identifiers().collect(); |
| 138 | + let (triangles, triples) = nodes |
| 139 | + .par_iter() |
| 140 | + .map(|node| digraph_node_triangles(graph, *node)) |
| 141 | + .reduce( |
| 142 | + || (0, 0), |
| 143 | + |(sumx, sumy), (resx, resy)| (sumx + resx, sumy + resy), |
| 144 | + ); |
| 145 | + |
| 146 | + match triangles { |
| 147 | + 0 => 0.0, |
| 148 | + _ => triangles as f64 / triples as f64, |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +#[cfg(test)] |
| 153 | +mod test_transitivity { |
| 154 | + use petgraph::{ |
| 155 | + graph::{DiGraph, UnGraph}, |
| 156 | + Graph, |
| 157 | + }; |
| 158 | + |
| 159 | + use super::{ |
| 160 | + digraph_node_triangles, digraph_transitivity, graph_node_triangles, graph_transitivity, |
| 161 | + }; |
| 162 | + |
| 163 | + #[test] |
| 164 | + fn test_node_triangles() { |
| 165 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(5, 6); |
| 166 | + let a = graph.add_node(()); |
| 167 | + let b = graph.add_node(()); |
| 168 | + let c = graph.add_node(()); |
| 169 | + let d = graph.add_node(()); |
| 170 | + let e = graph.add_node(()); |
| 171 | + graph.extend_with_edges([(a, b), (b, c), (a, c), (a, d), (c, d), (d, e)]); |
| 172 | + assert_eq!(graph_node_triangles(&graph, a), (2, 3)); |
| 173 | + } |
| 174 | + |
| 175 | + #[test] |
| 176 | + fn test_node_triangles_disconnected() { |
| 177 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(1, 0); |
| 178 | + let a = graph.add_node(()); |
| 179 | + assert_eq!(graph_node_triangles(&graph, a), (0, 0)); |
| 180 | + } |
| 181 | + |
| 182 | + #[test] |
| 183 | + fn test_transitivity() { |
| 184 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(5, 5); |
| 185 | + let a = graph.add_node(()); |
| 186 | + let b = graph.add_node(()); |
| 187 | + let c = graph.add_node(()); |
| 188 | + let d = graph.add_node(()); |
| 189 | + let e = graph.add_node(()); |
| 190 | + graph.extend_with_edges([(a, b), (a, c), (a, d), (a, e), (b, c)]); |
| 191 | + |
| 192 | + assert_eq!(graph_transitivity(&graph), 3. / 8.); |
| 193 | + } |
| 194 | + |
| 195 | + #[test] |
| 196 | + fn test_transitivity_triangle() { |
| 197 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(3, 3); |
| 198 | + let a = graph.add_node(()); |
| 199 | + let b = graph.add_node(()); |
| 200 | + let c = graph.add_node(()); |
| 201 | + graph.extend_with_edges([(a, b), (a, c), (b, c)]); |
| 202 | + assert_eq!(graph_transitivity(&graph), 1.0) |
| 203 | + } |
| 204 | + |
| 205 | + #[test] |
| 206 | + fn test_transitivity_star() { |
| 207 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(5, 4); |
| 208 | + let a = graph.add_node(()); |
| 209 | + let b = graph.add_node(()); |
| 210 | + let c = graph.add_node(()); |
| 211 | + let d = graph.add_node(()); |
| 212 | + let e = graph.add_node(()); |
| 213 | + graph.extend_with_edges([(a, b), (a, c), (a, d), (a, e)]); |
| 214 | + assert_eq!(graph_transitivity(&graph), 0.0) |
| 215 | + } |
| 216 | + |
| 217 | + #[test] |
| 218 | + fn test_transitivity_empty() { |
| 219 | + let graph: UnGraph<(), ()> = Graph::with_capacity(0, 0); |
| 220 | + assert_eq!(graph_transitivity(&graph), 0.0) |
| 221 | + } |
| 222 | + |
| 223 | + #[test] |
| 224 | + fn test_transitivity_disconnected() { |
| 225 | + let mut graph: UnGraph<(), ()> = Graph::with_capacity(2, 1); |
| 226 | + let a = graph.add_node(()); |
| 227 | + let b = graph.add_node(()); |
| 228 | + graph.add_node(()); |
| 229 | + graph.add_edge(a, b, ()); |
| 230 | + assert_eq!(graph_transitivity(&graph), 0.0) |
| 231 | + } |
| 232 | + |
| 233 | + #[test] |
| 234 | + fn test_two_directed_node_triangles() { |
| 235 | + let mut graph: DiGraph<(), ()> = Graph::with_capacity(5, 7); |
| 236 | + let a = graph.add_node(()); |
| 237 | + let b = graph.add_node(()); |
| 238 | + let c = graph.add_node(()); |
| 239 | + let d = graph.add_node(()); |
| 240 | + let e = graph.add_node(()); |
| 241 | + // The reciprocal edge (a, c) (c, a) double the number of triangles |
| 242 | + graph.extend_with_edges([(a, b), (b, c), (c, a), (a, c), (c, d), (d, a), (d, e)]); |
| 243 | + assert_eq!(digraph_node_triangles(&graph, a), (4, 10)); |
| 244 | + } |
| 245 | + |
| 246 | + #[test] |
| 247 | + fn test_directed_node_triangles_disconnected() { |
| 248 | + let mut graph: DiGraph<(), ()> = Graph::with_capacity(1, 0); |
| 249 | + let a = graph.add_node(()); |
| 250 | + assert_eq!(graph_node_triangles(&graph, a), (0, 0)); |
| 251 | + } |
| 252 | + |
| 253 | + #[test] |
| 254 | + fn test_transitivity_directed() { |
| 255 | + let mut graph: DiGraph<(), ()> = Graph::with_capacity(5, 4); |
| 256 | + let a = graph.add_node(()); |
| 257 | + let b = graph.add_node(()); |
| 258 | + let c = graph.add_node(()); |
| 259 | + let d = graph.add_node(()); |
| 260 | + graph.add_node(()); |
| 261 | + graph.extend_with_edges([(a, b), (a, c), (a, d), (b, c)]); |
| 262 | + assert_eq!(digraph_transitivity(&graph), 3. / 10.); |
| 263 | + } |
| 264 | + |
| 265 | + #[test] |
| 266 | + fn test_transitivity_triangle_directed() { |
| 267 | + let mut graph: DiGraph<(), ()> = Graph::with_capacity(3, 3); |
| 268 | + let a = graph.add_node(()); |
| 269 | + let b = graph.add_node(()); |
| 270 | + let c = graph.add_node(()); |
| 271 | + graph.extend_with_edges([(a, b), (a, c), (b, c)]); |
| 272 | + assert_eq!(digraph_transitivity(&graph), 0.5); |
| 273 | + } |
| 274 | + |
| 275 | + #[test] |
| 276 | + fn test_transitivity_fulltriangle_directed() { |
| 277 | + let mut graph: DiGraph<(), ()> = Graph::with_capacity(3, 6); |
| 278 | + let a = graph.add_node(()); |
| 279 | + let b = graph.add_node(()); |
| 280 | + let c = graph.add_node(()); |
| 281 | + graph.extend_with_edges([(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)]); |
| 282 | + assert_eq!(digraph_transitivity(&graph), 1.0); |
| 283 | + } |
| 284 | + |
| 285 | + #[test] |
| 286 | + fn test_transitivity_empty_directed() { |
| 287 | + let graph: DiGraph<(), ()> = Graph::with_capacity(0, 0); |
| 288 | + assert_eq!(digraph_transitivity(&graph), 0.0); |
| 289 | + } |
| 290 | +} |
0 commit comments