@@ -1672,7 +1672,8 @@ query_desc_to_dictarray(query_desc &qd, const char *null_suffix)
16721672 * @return A Python dictionary filled with numpy arrays
16731673 */
16741674static PyObject *
1675- create_fill_dictarray (Cursor *cursor, npy_intp nrows, const char *null_suffix, PyObject *target_dtypes)
1675+ create_fill_dictarray (Cursor *cursor, npy_intp nrows, const char *null_suffix,
1676+ PyObject *target_dtypes)
16761677{
16771678 query_desc qd;
16781679 if (perform_array_query (qd, cursor, nrows, lowercase (), null_suffix != 0 , target_dtypes) != 0 ) {
@@ -1683,8 +1684,6 @@ create_fill_dictarray(Cursor *cursor, npy_intp nrows, const char *null_suffix, P
16831684
16841685static const char *Cursor_npfetch_kwnames[] = {
16851686 " size" , // keyword to read the maximum number of rows. Defaults to all.
1686- " return_nulls" , // keyword to make a given fetch to add boolean columns for
1687- // nulls
16881687 " null_suffix" , // keyword providing the string to use as suffix
16891688 " target_dtypes" , // dict of numpy dtypes to use for each column
16901689 NULL
@@ -1712,18 +1711,16 @@ Cursor_fetchdictarray(PyObject *self, PyObject *args, PyObject *kwargs)
17121711 }
17131712
17141713 Py_ssize_t nrows = -1 ;
1715- bool return_nulls = false ;
1716- const char *null_suffix = " _isnull" ;
1714+ const char *null_suffix = NULL ;
17171715 PyObject *target_dtypes = NULL ;
17181716
17191717 if (
17201718 !PyArg_ParseTupleAndKeywords (
17211719 args,
17221720 kwargs,
1723- " |npsO " ,
1721+ " |nsO " ,
17241722 const_cast <char **>(Cursor_npfetch_kwnames),
17251723 &nrows,
1726- &return_nulls,
17271724 &null_suffix,
17281725 &target_dtypes
17291726 )
@@ -1738,13 +1735,13 @@ Cursor_fetchdictarray(PyObject *self, PyObject *args, PyObject *kwargs)
17381735 CAN_USE_DATETIME = true ;
17391736 }
17401737
1741- PyObject *dictarr = create_fill_dictarray (cursor, nrows, return_nulls ? null_suffix : 0 , target_dtypes);
1738+ PyObject *dictarr = create_fill_dictarray (cursor, nrows, null_suffix, target_dtypes);
17421739 Py_DECREF (numpy);
17431740 return dictarr;
17441741}
17451742
17461743char fetchdictarray_doc[] =
1747- " fetchdictarray(size=-1, return_nulls=False, null_suffix='_isnull' , target_dtypes=None)\n "
1744+ " fetchdictarray(size=-1, null_suffix=None , target_dtypes=None)\n "
17481745 " --> a dictionary of column arrays.\n "
17491746 " \n "
17501747 " Fetch as many rows as specified by size into a dictionary of NumPy\n "
@@ -1755,32 +1752,29 @@ char fetchdictarray_doc[] =
17551752 " \n "
17561753 " Parameters\n "
17571754 " ----------\n "
1758- " size : int, optional \n "
1755+ " size : Optional[ int] \n "
17591756 " The number of rows to fetch. Use -1 (the default) to fetch all\n "
17601757 " remaining rows.\n "
1761- " return_nulls : boolean, optional \n "
1762- " If True, information about null values will be included adding a \n "
1763- " boolean array using as key a string built by concatenating the \n "
1764- " column name and null_suffix .\n "
1765- " target_dtypes : dict, optional \n "
1758+ " null_suffix : Optional[str] \n "
1759+ " If specified, a new boolean column named `<column_name><null_suffix>` will be \n "
1760+ " included in the output, with values indicating which values in `<column_name>` were \n "
1761+ " null in the original array. If None, no such column will be included .\n "
1762+ " target_dtypes : Optional[ dict] \n "
17661763 " If provided, this mapping between {column name: dtype} coerces \n "
17671764 " the values read from the database into arrays of the requested\n "
17681765 " dtypes.\n "
1769- " null_suffix : string, optional\n "
1770- " A string used as a suffix when building the key for null values.\n "
1771- " Only used if return_nulls is True.\n "
17721766 " \n "
17731767 " Returns\n "
17741768 " -------\n "
1775- " out: dict\n "
1769+ " dict\n "
17761770 " A dictionary mapping column names to an ndarray holding its values\n "
17771771 " for the fetched rows. The dictionary will use the column name as\n "
17781772 " key for the ndarray containing values associated to that column.\n "
17791773 " Optionally, null information for nullable columns will be provided\n "
17801774 " by adding additional boolean columns named after the nullable column\n "
17811775 " concatenated to null_suffix\n "
17821776 " \n "
1783- " Remarks \n "
1777+ " Notes \n "
17841778 " -------\n "
17851779 " Similar to fetchmany(size), but returning a dictionary of NumPy ndarrays\n "
17861780 " for the results instead of a Python list of tuples of objects, reducing\n "
0 commit comments