Skip to content

Commit 6695249

Browse files
authored
Remove numpy 'import from' (#563)
1 parent 128ed39 commit 6695249

File tree

2 files changed

+20
-20
lines changed

2 files changed

+20
-20
lines changed

quantecon/discrete_rv.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@
55
"""
66

77
import numpy as np
8-
from numpy import cumsum
98
from .util import check_random_state
109

1110

@@ -29,7 +28,7 @@ class DiscreteRV:
2928

3029
def __init__(self, q):
3130
self._q = np.asarray(q)
32-
self.Q = cumsum(q)
31+
self.Q = np.cumsum(q)
3332

3433
def __repr__(self):
3534
return "DiscreteRV with {n} elements".format(n=self._q.size)
@@ -52,7 +51,7 @@ def q(self, val):
5251
5352
"""
5453
self._q = np.asarray(val)
55-
self.Q = cumsum(val)
54+
self.Q = np.cumsum(val)
5655

5756
def draw(self, k=1, random_state=None):
5857
"""

quantecon/kalman.py

Lines changed: 18 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,6 @@
99
"""
1010
from textwrap import dedent
1111
import numpy as np
12-
from numpy import dot
1312
from scipy.linalg import inv
1413
from quantecon.lss import LinearStateSpace
1514
from quantecon.matrix_eqn import solve_discrete_riccati
@@ -163,7 +162,9 @@ def whitener_lss(self):
163162
A, C, G, H = self.ss.A, self.ss.C, self.ss.G, self.ss.H
164163

165164
Atil = np.vstack([np.hstack([A, np.zeros((n, n)), np.zeros((n, l))]),
166-
np.hstack([dot(K, G), A-dot(K, G), dot(K, H)]),
165+
np.hstack([np.dot(K, G),
166+
A-np.dot(K, G),
167+
np.dot(K, H)]),
167168
np.zeros((l, 2*n + l))])
168169

169170
Ctil = np.vstack([np.hstack([C, np.zeros((n, l))]),
@@ -204,11 +205,11 @@ def prior_to_filtered(self, y):
204205
# === and then update === #
205206
y = np.atleast_2d(y)
206207
y.shape = self.ss.k, 1
207-
E = dot(self.Sigma, G.T)
208-
F = dot(dot(G, self.Sigma), G.T) + R
209-
M = dot(E, inv(F))
210-
self.x_hat = self.x_hat + dot(M, (y - dot(G, self.x_hat)))
211-
self.Sigma = self.Sigma - dot(M, dot(G, self.Sigma))
208+
E = np.dot(self.Sigma, G.T)
209+
F = np.dot(np.dot(G, self.Sigma), G.T) + R
210+
M = np.dot(E, inv(F))
211+
self.x_hat = self.x_hat + np.dot(M, (y - np.dot(G, self.x_hat)))
212+
self.Sigma = self.Sigma - np.dot(M, np.dot(G, self.Sigma))
212213

213214
def filtered_to_forecast(self):
214215
"""
@@ -222,8 +223,8 @@ def filtered_to_forecast(self):
222223
Q = np.dot(C, C.T)
223224

224225
# === and then update === #
225-
self.x_hat = dot(A, self.x_hat)
226-
self.Sigma = dot(A, dot(self.Sigma, A.T)) + Q
226+
self.x_hat = np.dot(A, self.x_hat)
227+
self.Sigma = np.dot(A, np.dot(self.Sigma, A.T)) + Q
227228

228229
def update(self, y):
229230
"""
@@ -268,9 +269,9 @@ def stationary_values(self, method='doubling'):
268269

269270
# === solve Riccati equation, obtain Kalman gain === #
270271
Sigma_infinity = solve_discrete_riccati(A.T, G.T, Q, R, method=method)
271-
temp1 = dot(dot(A, Sigma_infinity), G.T)
272-
temp2 = inv(dot(G, dot(Sigma_infinity, G.T)) + R)
273-
K_infinity = dot(temp1, temp2)
272+
temp1 = np.dot(np.dot(A, Sigma_infinity), G.T)
273+
temp2 = inv(np.dot(G, np.dot(Sigma_infinity, G.T)) + R)
274+
K_infinity = np.dot(temp1, temp2)
274275

275276
# == record as attributes and return == #
276277
self._Sigma_infinity, self._K_infinity = Sigma_infinity, K_infinity
@@ -300,14 +301,14 @@ def stationary_coefficients(self, j, coeff_type='ma'):
300301
P_mat = A
301302
P = np.identity(self.ss.n) # Create a copy
302303
elif coeff_type == 'var':
303-
coeffs.append(dot(G, K_infinity))
304-
P_mat = A - dot(K_infinity, G)
304+
coeffs.append(np.dot(G, K_infinity))
305+
P_mat = A - np.dot(K_infinity, G)
305306
P = np.copy(P_mat) # Create a copy
306307
else:
307308
raise ValueError("Unknown coefficient type")
308309
while i <= j:
309-
coeffs.append(dot(dot(G, P), K_infinity))
310-
P = dot(P, P_mat)
310+
coeffs.append(np.dot(np.dot(G, P), K_infinity))
311+
P = np.dot(P, P_mat)
311312
i += 1
312313
return coeffs
313314

@@ -317,4 +318,4 @@ def stationary_innovation_covar(self):
317318
R = np.dot(H, H.T)
318319
Sigma_infinity = self.Sigma_infinity
319320

320-
return dot(G, dot(Sigma_infinity, G.T)) + R
321+
return np.dot(G, np.dot(Sigma_infinity, G.T)) + R

0 commit comments

Comments
 (0)