@@ -95,7 +95,7 @@ class TestLQMarkov(unittest.TestCase):
95
95
96
96
def setUp (self ):
97
97
98
- # Markove chain transition matrix
98
+ # Markov chain transition matrix
99
99
Π = np .array ([[0.8 , 0.2 ],
100
100
[0.2 , 0.8 ]])
101
101
@@ -153,7 +153,7 @@ def test_scalar_sequences_with_seed(self):
153
153
lq_markov_scalar = self .lq_markov_scalar
154
154
x0 = 2
155
155
156
- expected_x_seq = np .array ([[2. , 1.15977567 , 1.20677567 ]])
156
+ expected_x_seq = np .array ([[2. , 1.15977567 , 0.6725398 ]])
157
157
expected_u_seq = np .array ([[1.28044866 , 0.7425166 ]])
158
158
expected_w_seq = np .array ([[1.3486939 , 0.55721062 , 0.53423587 ]])
159
159
expected_state = np .array ([1 , 1 , 1 ])
@@ -188,8 +188,8 @@ def test_mat_sequences(self):
188
188
lq_markov_mat = self .lq_markov_mat1
189
189
x0 = np .array ([[1000 , 1 , 25 ]])
190
190
191
- expected_x_seq = np .array ([[1.00000000e+03 , 1.01490556e +03 ],
192
- [1.00000000e+00 , 2.18454431e +00 ],
191
+ expected_x_seq = np .array ([[1.00000000e+03 , 1.01372101e +03 ],
192
+ [1.00000000e+00 , 1.00000000e +00 ],
193
193
[2.50000000e+01 , 2.61845443e+01 ]])
194
194
expected_u_seq = np .array ([[1013.72101253 ]])
195
195
expected_w_seq = np .array ([[0.41782708 , 1.18454431 ]])
0 commit comments