Skip to content

Commit 41343ab

Browse files
authored
[discrete_dp] correct some possible typos (#169)
1 parent 8eab0b5 commit 41343ab

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

lectures/dynamic_programming/discrete_dp.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,7 @@ By the definition of greedy policies given above, this means that
283283
$$
284284
\sigma^*(s) \in \operatorname*{arg\,max}_{a \in A(s)}
285285
\left\{
286-
r(s, a) + \beta \sum_{s' \in S} v^*(s') Q(s, \sigma(s), s')
286+
r(s, a) + \beta \sum_{s' \in S} v^*(s') Q(s, a, s')
287287
\right\}
288288
\qquad (s \in S)
289289
$$
@@ -907,7 +907,7 @@ end
907907

908908
Let's try different solution methods. The results below show that policy
909909
function iteration and modified policy function iteration are much
910-
faster that value function iteration.
910+
faster than value function iteration.
911911

912912
```{code-cell} julia
913913
@benchmark results = solve(ddp, PFI)
@@ -998,7 +998,7 @@ end
998998
```
999999

10001000
We next plot the consumption policies along the value iteration. First
1001-
we write a function to generate the and record the policies at given
1001+
we write a function to generate and record the policies at given
10021002
stages of iteration.
10031003

10041004
```{code-cell} julia

0 commit comments

Comments
 (0)