@@ -218,7 +218,7 @@ To solve for the coefficients, we notice that this is a simple system of equatio
218218
219219$$
220220\begin{array}
221- \,y_0 = c_0 + c_1 x_0 + \ldots c_N x_0^N\\
221+ cy_0 = c_0 + c_1 x_0 + \ldots c_N x_0^N\\
222222 \,\ldots\\
223223 \,y_N = c_0 + c_1 x_N + \ldots c_N x_N^N
224224\end{array}
502502Rearrange the $(D + R)x = b$ as
503503
504504$$
505- \begin{align }
505+ \begin{aligned }
506506D x &= b - R x\\
507507x &= D^{-1} (b - R x)
508- \end{align }
508+ \end{aligned }
509509$$
510510
511511where, since $D$ is diagonal, its inverse is trivial to calculate with $O(N)$ complexity.
@@ -618,12 +618,12 @@ operations.
618618To see an example of a right-preconditioner, consider a matrix $P$ which has a convenient and numerically stable inverse. Then
619619
620620$$
621- \begin{align }
621+ \begin{aligned }
622622A x &= b\\
623623A P^{-1} P x &= b\\
624624A P^{-1} y &= b\\
625625P x &= y
626- \end{align }
626+ \end{aligned }
627627$$
628628
629629That is, solve $(A P^{-1})y = b$ for $y$, and then solve $P x = y$ for $x$.
@@ -1000,12 +1000,12 @@ before we enumerate them linearly, take a $v\in R^{\mathbf{N}}$ interpreted as a
10001000For example, if we were implementing the product at the row of $Q$ corresponding to the $(n_1, \ldots, n_M)$ state, then
10011001
10021002$$
1003- \begin{align }
1003+ \begin{aligned }
10041004 Q_{(n_1, \ldots n_M)} \cdot v &=
10051005\theta \sum_{m=1}^M (n_m < N) v(n_1, \ldots, n_m + 1, \ldots, n_M)\\
10061006 &+ \zeta \sum_{m=1}^M (1 < n_m) v(n_1, \ldots, n_m - 1, \ldots, n_M)\\
10071007 &-\left(\theta\, \text{Count}(n_m < N) + \zeta\, \text{Count}( n_m > 1)\right)v(n_1, \ldots, n_M)
1008- \end{align }
1008+ \end{aligned }
10091009$$
10101010
10111011Here:
@@ -1182,12 +1182,12 @@ The logic for the adjoint is that for a given $n = (n_1,\ldots, n_m, \ldots n_M)
11821182Implementing this logic, first in math and then in code,
11831183
11841184$$
1185- \begin{align }
1185+ \begin{aligned }
11861186 Q^T_{(n_1, \ldots, n_M)} \cdot \psi &=
11871187\theta \sum_{m=1}^M (n_m > 1) \psi(n_1, \ldots, n_m - 1, \ldots, n_M)\\
11881188 &+ \zeta \sum_{m=1}^M (n_m < N) \psi(n_1, \ldots, n_m + 1, \ldots, n_M)\\
11891189 &-\left(\theta\, \text{Count}(n_m < N) + \zeta\, \text{Count}( n_m > 1)\right)\psi(n_1, \ldots, n_M)
1190- \end{align }
1190+ \end{aligned }
11911191$$
11921192
11931193``` {code-cell} julia
0 commit comments