You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -464,9 +475,9 @@ What happens with oscillating expenditures
464
475
465
476
```{code-cell} ipython3
466
477
λ = -0.95
467
-
geo_seq = λ ** np.arange(t_max) * G_0
478
+
geo_seq = λ ** np.arange(t_max) * G_0 + 1
468
479
G_seq_geo = np.concatenate(
469
-
[geo_seq, np.zeros(20)])
480
+
[geo_seq, np.ones(20)])
470
481
471
482
plot_ts(tax_model, B0, G_seq_geo)
472
483
```
@@ -648,16 +659,4 @@ plt.plot(ξ1_arr, cost_grad)
648
659
plt.ylabel('derivative of cost')
649
660
plt.xlabel(r'$\phi$')
650
661
plt.show()
651
-
```
652
-
653
-
<!-- ## Wrapping up the consumption-smoothing model
654
-
655
-
The consumption-smoothing model of Milton Friedman {cite}`Friedman1956` and Robert Hall {cite}`Hall1978`) is a cornerstone of modern macro that has important ramifications for the size of the Keynesian "fiscal policy multiplier" described briefly in
656
-
QuantEcon lecture {doc}`geometric series <geom_series>`.
657
-
658
-
In particular, it **lowers** the government expenditure multiplier relative to one implied by
659
-
the original Keynesian consumption function presented in {doc}`geometric series <geom_series>`.
660
-
661
-
Friedman's work opened the door to an enlightening literature on the aggregate consumption function and associated government expenditure multipliers that
0 commit comments