Skip to content

Commit 1007120

Browse files
committed
update imports njit to jit and usage
1 parent 851d779 commit 1007120

26 files changed

+47
-47
lines changed

lectures/career.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ import matplotlib.pyplot as plt
5151
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
5252
import numpy as np
5353
import quantecon as qe
54-
from numba import njit, prange
54+
from numba import jit, prange
5555
from quantecon.distributions import BetaBinomial
5656
from scipy.special import binom, beta
5757
from mpl_toolkits.mplot3d.axes3d import Axes3D

lectures/cass_koopmans_1.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ Let's start with some standard imports:
6767
```{code-cell} ipython
6868
import matplotlib.pyplot as plt
6969
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
70-
from numba import njit, float64
70+
from numba import jit, float64
7171
from numba.experimental import jitclass
7272
import numpy as np
7373
```

lectures/cass_koopmans_2.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ Let's start with some standard imports:
6868
```{code-cell} ipython
6969
import matplotlib.pyplot as plt
7070
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
71-
from numba import njit, float64
71+
from numba import jit, float64
7272
from numba.experimental import jitclass
7373
import numpy as np
7474
```

lectures/coleman_policy_iter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ Let's start with some imports:
6363
import matplotlib.pyplot as plt
6464
import numpy as np
6565
from quantecon.optimize import brentq
66-
from numba import njit
66+
from numba import jit
6767
```
6868

6969
## The Euler Equation

lectures/egm_policy_iter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Let's start with some standard imports:
4444
```{code-cell} ipython
4545
import matplotlib.pyplot as plt
4646
import numpy as np
47-
from numba import njit
47+
from numba import jit
4848
```
4949

5050
## Key Idea

lectures/eig_circulant.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ We begin by importing some Python packages
3131

3232
```{code-cell} ipython3
3333
import numpy as np
34-
from numba import njit
34+
from numba import jit
3535
import matplotlib.pyplot as plt
3636
```
3737

lectures/exchangeable.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@ tags: [hide-output]
7272
---
7373
import matplotlib.pyplot as plt
7474
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
75-
from numba import njit, vectorize
75+
from numba import jit, vectorize
7676
from math import gamma
7777
import scipy.optimize as op
7878
from scipy.integrate import quad
@@ -416,8 +416,8 @@ def learning_example(F_a=1, F_b=1, G_a=3, G_b=1.2):
416416
given the parameters which specify F and G distributions.
417417
"""
418418
419-
f = njit(lambda x: p(x, F_a, F_b))
420-
g = njit(lambda x: p(x, G_a, G_b))
419+
f = jit(lambda x: p(x, F_a, F_b))
420+
g = jit(lambda x: p(x, G_a, G_b))
421421
422422
# l(w) = f(w) / g(w)
423423
l = lambda w: f(w) / g(w)
@@ -557,8 +557,8 @@ To proceed, we create some Python code.
557557
def function_factory(F_a=1, F_b=1, G_a=3, G_b=1.2):
558558
559559
# define f and g
560-
f = njit(lambda x: p(x, F_a, F_b))
561-
g = njit(lambda x: p(x, G_a, G_b))
560+
f = jit(lambda x: p(x, F_a, F_b))
561+
g = jit(lambda x: p(x, G_a, G_b))
562562
563563
@jit
564564
def update(a, b, π):
@@ -678,8 +678,8 @@ The following code approximates the integral above:
678678
def expected_ratio(F_a=1, F_b=1, G_a=3, G_b=1.2):
679679
680680
# define f and g
681-
f = njit(lambda x: p(x, F_a, F_b))
682-
g = njit(lambda x: p(x, G_a, G_b))
681+
f = jit(lambda x: p(x, F_a, F_b))
682+
g = jit(lambda x: p(x, G_a, G_b))
683683
684684
l = lambda w: f(w) / g(w)
685685
integrand_f = lambda w, π: f(w) * l(w) / (π * l(w) + 1 - π)

lectures/ifp.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ We'll need the following imports:
6161
import matplotlib.pyplot as plt
6262
import numpy as np
6363
from quantecon.optimize import brentq
64-
from numba import njit, float64
64+
from numba import jit, float64
6565
from numba.experimental import jitclass
6666
from quantecon import MarkovChain
6767
```

lectures/ifp_advanced.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ We require the following imports:
5757
```{code-cell} ipython
5858
import matplotlib.pyplot as plt
5959
import numpy as np
60-
from numba import njit, float64
60+
from numba import jit, float64
6161
from numba.experimental import jitclass
6262
from quantecon import MarkovChain
6363
```

lectures/imp_sample.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ We start by importing some Python packages.
3131

3232
```{code-cell} ipython3
3333
import numpy as np
34-
from numba import njit, vectorize, prange
34+
from numba import jit, vectorize, prange
3535
import matplotlib.pyplot as plt
3636
from math import gamma
3737
```
@@ -81,8 +81,8 @@ def p(w, a, b):
8181
return r * w ** (a-1) * (1 - w) ** (b-1)
8282
8383
# The two density functions.
84-
f = njit(lambda w: p(w, F_a, F_b))
85-
g = njit(lambda w: p(w, G_a, G_b))
84+
f = jit(lambda w: p(w, F_a, F_b))
85+
g = jit(lambda w: p(w, G_a, G_b))
8686
```
8787

8888
```{code-cell} ipython3
@@ -99,7 +99,7 @@ plt.show()
9999
The likelihood ratio is `l(w)=f(w)/g(w)`.
100100

101101
```{code-cell} ipython3
102-
l = njit(lambda w: f(w) / g(w))
102+
l = jit(lambda w: f(w) / g(w))
103103
```
104104

105105
```{code-cell} ipython3

0 commit comments

Comments
 (0)