@@ -72,7 +72,7 @@ tags: [hide-output]
7272---
7373import matplotlib.pyplot as plt
7474plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
75- from numba import njit , vectorize
75+ from numba import jit , vectorize
7676from math import gamma
7777import scipy.optimize as op
7878from scipy.integrate import quad
@@ -416,8 +416,8 @@ def learning_example(F_a=1, F_b=1, G_a=3, G_b=1.2):
416416 given the parameters which specify F and G distributions.
417417 """
418418
419- f = njit (lambda x: p(x, F_a, F_b))
420- g = njit (lambda x: p(x, G_a, G_b))
419+ f = jit (lambda x: p(x, F_a, F_b))
420+ g = jit (lambda x: p(x, G_a, G_b))
421421
422422 # l(w) = f(w) / g(w)
423423 l = lambda w: f(w) / g(w)
@@ -557,8 +557,8 @@ To proceed, we create some Python code.
557557def function_factory(F_a=1, F_b=1, G_a=3, G_b=1.2):
558558
559559 # define f and g
560- f = njit (lambda x: p(x, F_a, F_b))
561- g = njit (lambda x: p(x, G_a, G_b))
560+ f = jit (lambda x: p(x, F_a, F_b))
561+ g = jit (lambda x: p(x, G_a, G_b))
562562
563563 @jit
564564 def update(a, b, π):
@@ -678,8 +678,8 @@ The following code approximates the integral above:
678678def expected_ratio(F_a=1, F_b=1, G_a=3, G_b=1.2):
679679
680680 # define f and g
681- f = njit (lambda x: p(x, F_a, F_b))
682- g = njit (lambda x: p(x, G_a, G_b))
681+ f = jit (lambda x: p(x, F_a, F_b))
682+ g = jit (lambda x: p(x, G_a, G_b))
683683
684684 l = lambda w: f(w) / g(w)
685685 integrand_f = lambda w, π: f(w) * l(w) / (π * l(w) + 1 - π)
0 commit comments