@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.16.6
7+ jupytext_version : 1.16.7
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -750,7 +750,7 @@ def plot_results(solution, k_ss, c_ss, shocks, shock_param,
750750 R_bar_path = compute_R_bar_path(shocks, k_path, model, S)
751751
752752 axes[2].plot(R_bar_path[:T], linestyle=linestyle, label=label)
753- axes[2].set_title('$\overline{R}$')
753+ axes[2].set_title(r '$\overline{R}$')
754754 axes[2].axhline(1 / model.β, linestyle='--', color='black')
755755
756756 η_path = compute_η_path(k_path, model, S=T)
@@ -1041,7 +1041,7 @@ Indeed, {eq}`eq:euler_house` or {eq}`eq:diff_second` indicates that a foreseen i
10411041crease in $\tau_{ct}$ (i.e., a decrease in $(1+\tau_{ct})$
10421042$(1+\tau_{ct+1})$) operates like an increase in $\tau_{kt}$.
10431043
1044- The following figure portrays the response to a foreseen increase in the consumption tax $\tau_c$.
1044+ The following figure portrays the response to a foreseen increase in the consumption tax $\tau_c$.
10451045
10461046```{code-cell} ipython3
10471047shocks = {
@@ -1101,7 +1101,6 @@ The figure shows that:
11011101- Transition dynamics push $k_t$ (capital stock) toward a new, lower steady-state level. In the new steady state:
11021102 - Consumption is lower due to reduced output from the lower capital stock.
11031103 - Smoother consumption paths occur when $\gamma = 2$ than when $\gamma = 0.2$.
1104-
11051104
11061105+++
11071106
@@ -1111,8 +1110,6 @@ foreseen one-time change in a policy variable (a "pulse").
11111110
11121111**Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
11131112
1114-
1115-
11161113```{code-cell} ipython3
11171114g_path = np.repeat(0.2, S + 1)
11181115g_path[10] = 0.4
@@ -1136,6 +1133,7 @@ The figure indicates how:
11361133 - Before $t = 10$, capital accumulates as interest rate changes induce households to prepare for the anticipated increase in government spending.
11371134 - At $t = 10$, the capital stock sharply decreases as the government consumes part of it.
11381135 - $\bar{R}$ jumps above its steady-state value due to the capital reduction and then gradually declines toward its steady-state level.
1136+
11391137+++
11401138
11411139### Method 2: Residual Minimization
@@ -1386,6 +1384,3 @@ shocks = {
13861384
13871385experiment_model(shocks, S, model, run_min, plot_results, 'g')
13881386```
1389-
1390- ``` {solution-end}
1391- ```
0 commit comments