Skip to content

Commit 2d6d24c

Browse files
committed
fix suggestions
1 parent b2d4f84 commit 2d6d24c

File tree

1 file changed

+10
-6
lines changed

1 file changed

+10
-6
lines changed

lectures/mle.md

Lines changed: 10 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ for μ in [1, 5, 10]:
125125
)
126126
127127
ax.grid()
128-
ax.set_xlabel("$y$", fontsize=14)
128+
ax.set_xlabel(r"$y$", fontsize=14)
129129
ax.set_ylabel(r"$f(y \mid \mu)$", fontsize=14)
130130
ax.axis(xmin=0, ymin=0)
131131
ax.legend(fontsize=14)
@@ -284,8 +284,8 @@ def plot_joint_poisson(μ=7, y_n=20):
284284
ax = fig.add_subplot(111, projection="3d")
285285
ax.plot_surface(X, Y, Z.T, cmap="terrain", alpha=0.6)
286286
ax.scatter(X, Y, Z.T, color="black", alpha=0.5, linewidths=1)
287-
ax.set(xlabel="$y_1$", ylabel="$y_2$")
288-
ax.set_zlabel("$f(y_1, y_2)$", labelpad=10)
287+
ax.set(xlabel=r"$y_1$", ylabel=r"$y_2$")
288+
ax.set_zlabel(r"$f(y_1, y_2)$", labelpad=10)
289289
plt.show()
290290
291291
@@ -610,7 +610,7 @@ for β in [7, 8.5, 9.5, 10]:
610610
m, c = find_tangent(β)
611611
y = m * β_line + c
612612
ax.plot(β_line, y, "-", c="purple", alpha=0.8)
613-
ax.text(β + 2.05, y[-1], f"$G({β}) = {abs(m):.0f}$", fontsize=12)
613+
ax.text(β + 2.05, y[-1], rf"$G({β}) = {abs(m):.0f}$", fontsize=12)
614614
ax.vlines(β, -24, logL(β), linestyles="--", alpha=0.5)
615615
ax.hlines(logL(β), 6, β, linestyles="--", alpha=0.5)
616616
@@ -646,7 +646,9 @@ X = jnp.array([[1, 2, 5], [1, 1, 3], [1, 4, 2], [1, 5, 2], [1, 3, 1]])
646646
647647
y = jnp.array([1, 0, 1, 1, 0])
648648
649-
stats_poisson = Poisson(y.__array__(), X.__array__()).fit()
649+
y_numpy = y.__array__()
650+
X_numpy = X.__array__()
651+
stats_poisson = Poisson(y_numpy, X_numpy).fit()
650652
print(stats_poisson.summary())
651653
```
652654

@@ -991,7 +993,9 @@ newton_raphson(prob, β)
991993
```{code-cell} ipython3
992994
# Use statsmodels to verify results
993995
# Note: use __array__() method to convert jax to numpy arrays
994-
print(Probit(y.__array__(), X.__array__()).fit().summary())
996+
y_numpy = y.__array__()
997+
X_numpy = X.__array__()
998+
print(Probit(y_numpy, X_numpy).fit().summary())
995999
```
9961000

9971001
```{solution-end}

0 commit comments

Comments
 (0)