@@ -165,16 +165,10 @@ These parameters are stored in the following namedtuple:
165165
166166``` {code-cell} ipython3
167167class Firm(NamedTuple):
168- A: float # Total factor productivity
169- N: float # Total labor supply
170- α: float # Capital share
171- δ: float # Depreciation rate
172-
173- def create_firm(A=1.0, N=1.0, α=0.33, δ=0.05):
174- """
175- Create a Firm namedtuple that stores firm data.
176- """
177- return Firm(A=A, N=N, α=α, δ=δ)
168+ A: float = 1.0 # Total factor productivity
169+ N: float = 1.0 # Total labor supply
170+ α: float = 0.33 # Capital share
171+ δ: float = 0.05 # Depreciation rate
178172```
179173
180174From the first-order condition with respect to capital, the firm's inverse demand for capital is
@@ -574,7 +568,7 @@ Let's inspect visually as a first pass
574568
575569``` {code-cell} ipython3
576570num_points = 50
577- firm = create_firm ()
571+ firm = Firm ()
578572household = create_household()
579573k_vals = jnp.linspace(4, 12, num_points)
580574out = [G(k, firm, household) for k in k_vals]
@@ -615,7 +609,7 @@ def compute_equilibrium(firm, household,
615609```
616610
617611``` {code-cell} ipython3
618- firm = create_firm ()
612+ firm = Firm ()
619613household = create_household()
620614print("\nComputing equilibrium capital stock")
621615with qe.Timer():
@@ -705,7 +699,7 @@ def compute_equilibrium_bisect(firm, household, a=1.0, b=20.0):
705699 K = bisect(lambda k: k - G(k, firm, household), a, b, xtol=1e-4)
706700 return K
707701
708- firm = create_firm ()
702+ firm = Firm ()
709703household = create_household()
710704print("\nComputing equilibrium capital stock using bisection")
711705with qe.Timer():
0 commit comments