Skip to content

Commit 4064d9a

Browse files
committed
update cass fiscal
1 parent 912db6c commit 4064d9a

File tree

1 file changed

+17
-10
lines changed

1 file changed

+17
-10
lines changed

lectures/cass_fiscal.md

Lines changed: 17 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ under the budget constraint
6868
$$
6969
\begin{aligned}
7070
\sum_{t=0}^\infty& q_t \left\{ (1 + \tau_{ct})c_t + \underbrace{[k_{t+1} - (1 - \delta)k_t]}_{\text{no tax when investing}} \right\} \\
71-
&\leq \sum_{t=0}^\infty q_t \left\{ \tau_{kt} - \underbrace{\tau_{kt}(\eta_t - \delta)k_t}_{\text{tax on rental return}} + (1 - \tau_{nt})w_t n_t - \tau_{ht} \right\}.
71+
&\leq \sum_{t=0}^\infty q_t \left\{ \eta_t k_t - \underbrace{\tau_{kt}(\eta_t - \delta)k_t}_{\text{tax on rental return}} + (1 - \tau_{nt})w_t n_t - \tau_{ht} \right\}.
7272
\end{aligned}
7373
$$ (eq:house_budget)
7474
@@ -664,7 +664,7 @@ def plot_results(solution, k_ss, c_ss, shocks, shock_param,
664664
axes[4].set_title(rf'${shock_param}$')
665665
```
666666
667-
#### Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10.
667+
**Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10**
668668
669669
The experiment replicates the Figure 12.9.1 in RMT5 under $\gamma = 2$.
670670
@@ -874,7 +874,7 @@ plt.tight_layout()
874874
plt.show()
875875
```
876876
877-
#### Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.
877+
**Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10**
878878
879879
The experiment replicates the Figure 12.9.4.
880880
@@ -888,7 +888,7 @@ shocks = {
888888
experiment_model(shocks, S, model, run_shooting, plot_results, 'τ_c')
889889
```
890890
891-
#### Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.
891+
**Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10**
892892
893893
The experiment replicates the Figure 12.9.5.
894894
@@ -903,7 +903,7 @@ experiment_two_models(shocks, S, model, model_γ2,
903903
run_shooting, plot_results, 'τ_k')
904904
```
905905
906-
#### Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever
906+
**Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
907907
908908
The experiment replicates the Figure 12.9.6.
909909
@@ -945,18 +945,25 @@ The algorithm is described as follows:
945945
946946
3. *Compute the residuals* $l_a$ and $l_k$ for $t = 0, \dots, S$, as well as $l_{k_0}$ for $t = 0$ and $l_{k_S}$ for $t = S$:
947947
- Compute the *Euler's equation* residual for $t = 0, \dots, S$ using {eq}`eq:diff_second`:
948+
948949
$$
949950
l_{ta} = \beta u'(c_{t+1}) \frac{(1 + \tau_{ct})}{(1 + \tau_{ct+1})} \left[(1 - \tau_{kt+1})(f'(k_{t+1}) - \delta) + 1 \right] - 1
950951
$$
952+
951953
- Compute the *feasibility condition* residual for $t = 1, \dots, S-1$ using {eq}`eq:feasi_capital`:
954+
952955
$$
953-
l_{tk} = k_{t+1} - f(k_t) + (1 - \delta)k_t - g_t - c_t
956+
l_{tk} = k_{t+1} - f(k_t) - (1 - \delta)k_t + g_t + c_t
954957
$$
958+
955959
- Compute the residual for the *initial condition for $k_0$* using {eq}`eq:diff_second_steady` and the initial capital $k_0$:
960+
956961
$$
957962
l_{k_0} = 1 - \beta \left[ (1 - \tau_{k0}) \left(f'(k_0) - \delta \right) + 1 \right]
958963
$$
964+
959965
- Compute the residual for the *terminal condition* for $t = S$ using {eq}`eq:diff_second` under the assumptions $c_t = c_{t+1} = c_S$, $k_t = k_{t+1} = k_S$, $\tau_{ct} = \tau_{ct+1} = \tau_{cS}$, and $\tau_{kt} = \tau_{kt+1} = \tau_{kS}$:
966+
960967
$$
961968
l_{k_S} = \beta u'(c_S) \frac{(1 + \tau_{cS})}{(1 + \tau_{cS})} \left[(1 - \tau_{kS})(f'(k_S) - \delta) + 1 \right] - 1
962969
$$
@@ -1038,7 +1045,7 @@ Below are the results for the same experiments using the second method.
10381045

10391046
This method does not have numerical stability issues, so `mp.mpf` is not necessary.
10401047

1041-
### Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10
1048+
**Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10**
10421049

10431050
The experiment replicates Figure 12.9.1 in RMT5 under the parameter $\gamma = 2$.
10441051

@@ -1080,7 +1087,7 @@ plt.tight_layout()
10801087
plt.show()
10811088
```
10821089

1083-
### Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.
1090+
**Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.**
10841091

10851092
The experiment replicates the Figure 12.9.4.
10861093

@@ -1094,7 +1101,7 @@ shocks = {
10941101
experiment_model(shocks, S, model, run_min, plot_results, 'τ_c')
10951102
```
10961103

1097-
### Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.
1104+
**Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.**
10981105

10991106
The experiment replicates the Figure 12.9.5.
11001107

@@ -1109,7 +1116,7 @@ experiment_two_models(shocks, S, model, model_γ2,
11091116
run_min, plot_results, 'τ_k')
11101117
```
11111118

1112-
### Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever
1119+
**Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
11131120

11141121
The experiment replicates the Figure 12.9.6.
11151122

0 commit comments

Comments
 (0)