@@ -68,7 +68,7 @@ under the budget constraint
6868$$
6969\begin{aligned}
7070 \sum_ {t=0}^\infty& q_t \left\{ (1 + \tau_ {ct})c_t + \underbrace{[ k_ {t+1} - (1 - \delta)k_t] }_ {\text{no tax when investing}} \right\} \\
71- &\leq \sum_ {t=0}^\infty q_t \left\{ \tau _ {kt} - \underbrace{\tau_ {kt}(\eta_t - \delta)k_t}_ {\text{tax on rental return}} + (1 - \tau_ {nt})w_t n_t - \tau_ {ht} \right\} .
71+ &\leq \sum_ {t=0}^\infty q_t \left\{ \eta_t k_t - \underbrace{\tau_ {kt}(\eta_t - \delta)k_t}_ {\text{tax on rental return}} + (1 - \tau_ {nt})w_t n_t - \tau_ {ht} \right\} .
7272\end{aligned}
7373$$ (eq:house_budget)
7474
@@ -664,7 +664,7 @@ def plot_results(solution, k_ss, c_ss, shocks, shock_param,
664664 axes[4].set_title(rf'${shock_param}$')
665665```
666666
667- #### Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10.
667+ ** Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10**
668668
669669The experiment replicates the Figure 12.9.1 in RMT5 under $\gamma = 2$.
670670
@@ -874,7 +874,7 @@ plt.tight_layout()
874874plt.show()
875875```
876876
877- #### Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.
877+ ** Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10**
878878
879879The experiment replicates the Figure 12.9.4.
880880
@@ -888,7 +888,7 @@ shocks = {
888888experiment_model(shocks, S, model, run_shooting, plot_results, 'τ_c')
889889```
890890
891- #### Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.
891+ ** Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10**
892892
893893The experiment replicates the Figure 12.9.5.
894894
@@ -903,7 +903,7 @@ experiment_two_models(shocks, S, model, model_γ2,
903903 run_shooting, plot_results, 'τ_k')
904904```
905905
906- #### Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever
906+ ** Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
907907
908908The experiment replicates the Figure 12.9.6.
909909
@@ -945,18 +945,25 @@ The algorithm is described as follows:
945945
9469463. *Compute the residuals* $l_a$ and $l_k$ for $t = 0, \dots, S$, as well as $l_{k_0}$ for $t = 0$ and $l_{k_S}$ for $t = S$:
947947 - Compute the *Euler's equation* residual for $t = 0, \dots, S$ using {eq}`eq:diff_second`:
948+
948949 $$
949950 l_{ta} = \beta u'(c_{t+1}) \frac{(1 + \tau_{ct})}{(1 + \tau_{ct+1})} \left[(1 - \tau_{kt+1})(f'(k_{t+1}) - \delta) + 1 \right] - 1
950951 $$
952+
951953 - Compute the * feasibility condition* residual for $t = 1, \dots, S-1$ using {eq}` eq:feasi_capital ` :
954+
952955 $$
953- l_{tk} = k_{t+1} - f(k_t) + (1 - \delta)k_t - g_t - c_t
956+ l_{tk} = k_{t+1} - f(k_t) - (1 - \delta)k_t + g_t + c_t
954957 $$
958+
955959 - Compute the residual for the * initial condition for $k_0$* using {eq}` eq:diff_second_steady ` and the initial capital $k_0$:
960+
956961 $$
957962 l_{k_0} = 1 - \beta \left[ (1 - \tau_{k0}) \left(f'(k_0) - \delta \right) + 1 \right]
958963 $$
964+
959965 - Compute the residual for the * terminal condition* for $t = S$ using {eq}` eq:diff_second ` under the assumptions $c_t = c_ {t+1} = c_S$, $k_t = k_ {t+1} = k_S$, $\tau_ {ct} = \tau_ {ct+1} = \tau_ {cS}$, and $\tau_ {kt} = \tau_ {kt+1} = \tau_ {kS}$:
966+
960967 $$
961968 l_{k_S} = \beta u'(c_S) \frac{(1 + \tau_{cS})}{(1 + \tau_{cS})} \left[(1 - \tau_{kS})(f'(k_S) - \delta) + 1 \right] - 1
962969 $$
@@ -1038,7 +1045,7 @@ Below are the results for the same experiments using the second method.
10381045
10391046This method does not have numerical stability issues, so ` mp.mpf ` is not necessary.
10401047
1041- ### Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10
1048+ ** Experiment 1: Foreseen once-and-for-all increase in $g$ from 0.2 to 0.4 in period 10**
10421049
10431050The experiment replicates Figure 12.9.1 in RMT5 under the parameter $\gamma = 2$.
10441051
@@ -1080,7 +1087,7 @@ plt.tight_layout()
10801087plt.show()
10811088```
10821089
1083- ### Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.
1090+ ** Experiment 2: Foreseen once-and-for-all increase in $\tau_c$ from 0.0 to 0.2 in period 10.**
10841091
10851092The experiment replicates the Figure 12.9.4.
10861093
@@ -1094,7 +1101,7 @@ shocks = {
10941101experiment_model(shocks, S, model, run_min, plot_results, 'τ_c')
10951102```
10961103
1097- ### Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.
1104+ ** Experiment 3: Foreseen once-and-for-all increase in $\tau_k$ from 0.0 to 0.2 in period 10.**
10981105
10991106The experiment replicates the Figure 12.9.5.
11001107
@@ -1109,7 +1116,7 @@ experiment_two_models(shocks, S, model, model_γ2,
11091116 run_min, plot_results, 'τ_k')
11101117```
11111118
1112- ### Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever
1119+ ** Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
11131120
11141121The experiment replicates the Figure 12.9.6.
11151122
0 commit comments