@@ -1028,11 +1028,11 @@ def simulate_learning_blume_easley(sequences, f_belief, g_belief,
10281028 N, T = sequences.shape
10291029
10301030 # Initialize arrays to store results
1031- π_1_seq = np.empty ((N, T))
1032- π_2_seq = np.empty ((N, T))
1033- c1_share = np.empty ((N, T))
1034- l_agents_seq = np.empty ((N, T))
1035-
1031+ π_1_seq = np.full ((N, T), np.nan )
1032+ π_2_seq = np.full ((N, T), np.nan )
1033+ c1_share = np.full ((N, T), np.nan )
1034+ l_agents_seq = np.full ((N, T), np.nan )
1035+
10361036 π_1_seq[:, 0] = π_0_1
10371037 π_2_seq[:, 0] = π_0_2
10381038
@@ -1096,7 +1096,7 @@ f = jit(lambda x: p(x, F_a, F_b))
10961096g = jit(lambda x: p(x, G_a, G_b))
10971097```
10981098
1099- We start the $\pi^i_0 \in (0, 1)$ from different starting points and widen the gap
1099+ We start with different initial priors $\pi^i_0 \in (0, 1)$ and widen the gap between them.
11001100
11011101``` {code-cell} ipython3
11021102# Different initial priors
@@ -1270,7 +1270,7 @@ fig_g, axes_g = plot_learning_results(results_g, π_0_scenarios, 'g', 0.0)
12701270plt.show()
12711271```
12721272
1273- In this case, it is easier to realize one's belief is incorrect, the belief adjust more quickly.
1273+ In this case, it is easier to realize one's belief is incorrect; the belief adjusts more quickly.
12741274
12751275Observe that consumption shares also adjust more quickly.
12761276
0 commit comments