@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.16.1
7+ jupytext_version : 1.16.4
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -66,7 +66,7 @@ Let's start with some standard imports:
6666
6767``` {code-cell} ipython3
6868import matplotlib.pyplot as plt
69- from numba import njit , float64
69+ from numba import jit , float64
7070from numba.experimental import jitclass
7171import numpy as np
7272from quantecon.optimize import brentq
@@ -525,7 +525,7 @@ planning problem.
525525$c_0$ instead of $\mu_0$ in the following code.)
526526
527527```{code-cell} ipython3
528- @njit
528+ @jit
529529def shooting(pp, c0, k0, T=10):
530530 '''
531531 Given the initial condition of capital k0 and an initial guess
@@ -610,7 +610,7 @@ When $K_{T+1}$ gets close enough to $0$ (i.e., within an error
610610tolerance bounds), we stop.
611611
612612```{code-cell} ipython3
613- @njit
613+ @jit
614614def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):
615615
616616 # initial boundaries for guess c0
@@ -804,7 +804,7 @@ over time.
804804Let's calculate and plot the saving rate.
805805
806806```{code-cell} ipython3
807- @njit
807+ @jit
808808def saving_rate(pp, c_path, k_path):
809809 'Given paths of c and k, computes the path of saving rate.'
810810 production = pp.f(k_path[:-1])
@@ -912,7 +912,7 @@ $$ (eq:tildeC)
912912A positive fixed point $C = \tilde C(K)$ exists only if $f\left(K\right)+\left(1-\delta\right)K-f^{\prime-1}\left(\frac{1}{\beta}-\left(1-\delta\right)\right)>0$
913913
914914```{code-cell} ipython3
915- @njit
915+ @jit
916916def C_tilde(K, pp):
917917
918918 return pp.f(K) + (1 - pp.δ) * K - pp.f_prime_inv(1 / pp.β - 1 + pp.δ)
@@ -931,11 +931,11 @@ K = \tilde K(C)
931931$$ (eq:tildeK)
932932
933933```{code-cell} ipython3
934- @njit
934+ @jit
935935def K_diff(K, C, pp):
936936 return pp.f(K) - pp.δ * K - C
937937
938- @njit
938+ @jit
939939def K_tilde(C, pp):
940940
941941 res = brentq(K_diff, 1e-6, 100, args=(C, pp))
@@ -951,7 +951,7 @@ It is thus the intersection of the two curves $\tilde{C}$ and $\tilde{K}$ that w
951951We can compute $K_s$ by solving the equation $K_s = \tilde{K}\left(\tilde{C}\left(K_s\right)\right)$
952952
953953```{code-cell} ipython3
954- @njit
954+ @jit
955955def K_tilde_diff(K, pp):
956956
957957 K_out = K_tilde(C_tilde(K, pp), pp)
@@ -1003,7 +1003,7 @@ In addition to the three curves, Figure {numref}`stable_manifold` plots arrows
10031003---
10041004mystnb:
10051005 figure:
1006- caption: " Stable Manifold and Phase Plane"
1006+ caption: Stable Manifold and Phase Plane
10071007 name: stable_manifold
10081008tags: [hide-input]
10091009---
0 commit comments