@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.16.1
7+ jupytext_version : 1.16.4
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -66,7 +66,7 @@ Let's start with some standard imports:
6666
6767``` {code-cell} ipython3
6868import matplotlib.pyplot as plt
69- from numba import njit , float64
69+ from numba import jit , float64
7070from numba.experimental import jitclass
7171import numpy as np
7272from quantecon.optimize import brentq
@@ -524,7 +524,7 @@ planning problem.
524524(Actually, we modified the preceding algorithm slightly by starting with a guess for
525525$c_0$ instead of $\mu_0$ in the following code.)
526526
527- ```{code-cell} python3
527+ ```{code-cell} ipython3
528528@jit
529529def shooting(pp, c0, k0, T=10):
530530 '''
@@ -609,7 +609,7 @@ Shoot forward again, iterating on these steps until we converge.
609609When $K_{T+1}$ gets close enough to $0$ (i.e., within an error
610610tolerance bounds), we stop.
611611
612- ```{code-cell} python3
612+ ```{code-cell} ipython3
613613@jit
614614def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):
615615
@@ -803,7 +803,6 @@ over time.
803803
804804Let's calculate and plot the saving rate.
805805
806-
807806```{code-cell} ipython3
808807@jit
809808def saving_rate(pp, c_path, k_path):
@@ -1004,7 +1003,7 @@ In addition to the three curves, Figure {numref}`stable_manifold` plots arrows
10041003---
10051004mystnb:
10061005 figure:
1007- caption: " Stable Manifold and Phase Plane"
1006+ caption: Stable Manifold and Phase Plane
10081007 name: stable_manifold
10091008tags: [hide-input]
10101009---
0 commit comments