@@ -556,8 +556,9 @@ class BayesianInference:
556556 Computes numerically the posterior distribution with beta prior parametrized by (alpha0, beta0)
557557 given data using MCMC
558558 """
559- # tensorize
560- data = torch.tensor(data)
559+
560+ # Convert data to float32
561+ data = np.asarray(data, dtype=np.float32)
561562
562563 # use pyro
563564 if self.solver=='pyro':
@@ -966,18 +967,18 @@ We first initialize the `BayesianInference` classes and then can directly call `
966967```{code-cell} ipython3
967968# Initialize BayesianInference classes
968969# try uniform
969- STD_UNIFORM_pyro = BayesianInference(param=(0,1 ), name_dist='uniform', solver='pyro')
970+ STD_UNIFORM_pyro = BayesianInference(param=(0.0,1.0 ), name_dist='uniform', solver='pyro')
970971UNIFORM_numpyro = BayesianInference(param=(0.2,0.7), name_dist='uniform', solver='numpyro')
971972
972973# try truncated lognormal
973- LOGNORMAL_numpyro = BayesianInference(param=(0,2 ), name_dist='lognormal', solver='numpyro')
974- LOGNORMAL_pyro = BayesianInference(param=(0,2 ), name_dist='lognormal', solver='pyro')
974+ LOGNORMAL_numpyro = BayesianInference(param=(0.0,2.0 ), name_dist='lognormal', solver='numpyro')
975+ LOGNORMAL_pyro = BayesianInference(param=(0.0,2.0 ), name_dist='lognormal', solver='pyro')
975976
976977# try von Mises
977978# shifted von Mises
978- VONMISES_numpyro = BayesianInference(param=10, name_dist='vonMises', solver='numpyro')
979+ VONMISES_numpyro = BayesianInference(param=10.0 , name_dist='vonMises', solver='numpyro')
979980# truncated von Mises
980- VONMISES_pyro = BayesianInference(param=40, name_dist='vonMises', solver='pyro')
981+ VONMISES_pyro = BayesianInference(param=40.0 , name_dist='vonMises', solver='pyro')
981982
982983# try laplace
983984LAPLACE_numpyro = BayesianInference(param=(0.5, 0.07), name_dist='laplace', solver='numpyro')
0 commit comments