Skip to content

Commit 7f6a7b2

Browse files
committed
fix title case
1 parent f6c69e7 commit 7f6a7b2

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

lectures/mle.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ kernelspec:
2727

2828
## Overview
2929

30-
In a {doc}`previous lecture <ols>`, we estimated the relationship between
30+
In {doc}`ols`, we estimated the relationship between
3131
dependent and explanatory variables using linear regression.
3232

3333
But what if a linear relationship is not an appropriate assumption for our model?
@@ -64,11 +64,11 @@ from mpl_toolkits.mplot3d import Axes3D
6464

6565
We assume familiarity with basic probability and multivariate calculus.
6666

67-
## Set Up and Assumptions
67+
## Set up and assumptions
6868

6969
Let's consider the steps we need to go through in maximum likelihood estimation and how they pertain to this study.
7070

71-
### Flow of Ideas
71+
### Flow of ideas
7272

7373
The first step with maximum likelihood estimation is to choose the probability distribution believed to be generating the data.
7474

@@ -85,7 +85,7 @@ We'll let the data pick out a particular element of the class by pinning down th
8585

8686
The parameter estimates so produced will be called **maximum likelihood estimates**.
8787

88-
### Counting Billionaires
88+
### Counting billionaires
8989

9090
Treisman {cite}`Treisman2016` is interested in estimating the number of billionaires in different countries.
9191

@@ -170,7 +170,7 @@ plt.show()
170170

171171
From the histogram, it appears that the Poisson assumption is not unreasonable (albeit with a very low $\mu$ and some outliers).
172172

173-
## Conditional Distributions
173+
## Conditional distributions
174174

175175
In Treisman's paper, the dependent variable --- the number of billionaires $y_i$ in country $i$ --- is modeled as a function of GDP per capita, population size, and years membership in GATT and WTO.
176176

@@ -238,7 +238,7 @@ plt.show()
238238
We can see that the distribution of $y_i$ is conditional on
239239
$\mathbf{x}_i$ ($\mu_i$ is no longer constant).
240240

241-
## Maximum Likelihood Estimation
241+
## Maximum likelihood estimation
242242

243243
In our model for number of billionaires, the conditional distribution
244244
contains 4 ($k = 4$) parameters that we need to estimate.
@@ -845,7 +845,7 @@ Probit model.
845845
To begin, find the log-likelihood function and derive the gradient and
846846
Hessian.
847847
848-
The `scipy` module `stats.norm` contains the functions needed to
848+
The `jax.scipy.stats` module `norm` contains the functions needed to
849849
compute the cmf and pmf of the normal distribution.
850850
```
851851

@@ -990,7 +990,7 @@ newton_raphson(prob, β)
990990

991991
```{code-cell} ipython3
992992
# Use statsmodels to verify results
993-
# Note that use __array__() method to convert jax to numpy arrays
993+
# Note: use __array__() method to convert jax to numpy arrays
994994
print(Probit(y.__array__(), X.__array__()).fit().summary())
995995
```
996996

0 commit comments

Comments
 (0)