@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.16.4
7+ jupytext_version : 1.17.1
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -1586,19 +1586,19 @@ $$ (eq:consume_r_mod)
15861586In a steady state, $c_{t+1} = c_t$. Then {eq}`eq:diff_mod` becomes
15871587
15881588$$
1589- 1=\mu^{-\gamma}\beta[ (1-\tau_k)(f'(k)-\delta)+1] \tag{36.29}
1589+ 1=\mu^{-\gamma}\beta[ (1-\tau_k)(f'(k)-\delta)+1]
15901590$$ (eq:diff_mod_st)
15911591
15921592from which we can compute that the steady-state level of capital per unit of effective labor satisfies
15931593
15941594$$
1595- f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k}) \tag{36.30}
1595+ f'(k)=\delta + (\frac{\frac{1}{\beta}\mu^{\gamma}-1}{1-\tau_k})
15961596$$ (eq:cap_mod_st)
15971597
15981598and that
15991599
16001600$$
1601- \bar{R}=\frac{\mu^{\gamma}}{\beta} \tag{36.31}
1601+ \bar{R}=\frac{\mu^{\gamma}}{\beta}
16021602$$ (eq:Rbar_mod_st)
16031603
16041604The steady-state level of consumption per unit of effective labor can be found using {eq}`eq:feasi_mod`:
@@ -1664,6 +1664,7 @@ for ax in axes[5:]:
16641664plt.tight_layout()
16651665plt.show()
16661666```
1667+
16671668The results in the figures are mainly driven by {eq}`eq:diff_mod_st`
16681669and imply that a permanent increase in
16691670$\mu$ will lead to a decrease in the steady-state value of capital per unit of effective
@@ -1916,6 +1917,16 @@ def Bf_path(k, c, g, model):
19161917 R[t-1] * Bf[t-1] + c[t] + inv + g[t-1]
19171918 - f(k[t-1], model))
19181919 return Bf
1920+
1921+ def Bf_ss(c_ss, k_ss, g_ss, model):
1922+ """
1923+ Compute the steady-state B^f
1924+ """
1925+ R_ss = 1.0 / model.β
1926+ inv_ss = model.δ * k_ss
1927+ num = c_ss + inv_ss + g_ss - f(k_ss, model)
1928+ den = 1.0 - R_ss
1929+ return num / den
19191930```
19201931
19211932and
@@ -1992,11 +2003,11 @@ The steady state of the two-country model is characterized by two sets of equati
19922003First, the following equations determine the steady-state capital-labor ratios $\bar k$ and $\bar k^*$ in each country:
19932004
19942005$$
1995- f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k} \tag{12.13.12}
2006+ f'(\bar{k}) = \delta + \frac{\rho}{1 - \tau_k}
19962007$$ (eq:steady_k_bar)
19972008
19982009$$
1999- f'(\bar{k}^* ) = \delta + \frac{\rho}{1 - \tau_k^* } \tag{12.13.13}
2010+ f'(\bar{k}^* ) = \delta + \frac{\rho}{1 - \tau_k^* }
20002011$$ (eq:steady_k_star)
20012012
20022013Given these steady-state capital-labor ratios, the domestic and foreign consumption values $\bar c$ and $\bar c^*$ are determined by:
@@ -2172,7 +2183,7 @@ g_ss = 0.2
21722183k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
21732184
21742185k_star = k0_ss
2175- Bf_star = 0.0
2186+ Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
21762187
21772188init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
21782189sol_glob = root(
@@ -2229,7 +2240,7 @@ shocks_global = {
22292240
22302241k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
22312242k_star = k0_ss
2232- Bf_star = 0.0
2243+ Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)
22332244
22342245init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
22352246
0 commit comments