Skip to content

Commit a9df52c

Browse files
committed
update references
1 parent 1659b88 commit a9df52c

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lectures/hoist_failure.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ We'll use the following concepts and tools:
4343
* Fourier transforms and inverse Fourier transforms as efficient ways of computing convolutions of sequences
4444

4545
```{seealso}
46-
For more on Fourier transforms, see {doc}`Circulant Matrices <eig_circulant>` as well as {doc}`Covariance Stationary Processes <arma>` and {doc}`Estimation of Spectra <estspec>`.
46+
For more on Fourier transforms, see {doc}`Circulant Matrices <eig_circulant>` as well as {doc}`Covariance Stationary Processes <advanced:arma>` and {doc}`Estimation of Spectra <advanced:estspec>`.
4747
```
4848

4949
{cite:t}`Ardron_2018` and {cite:t}`Greenfield_Sargent_1993` applied these methods to approximate failure probabilities of safety systems in nuclear facilities.
@@ -328,7 +328,7 @@ Let's define the Fourier transform and the inverse Fourier transform first
328328
The **Fourier transform** of a sequence $\{x_t\}_{t=0}^{T-1}$ is
329329

330330
```{math}
331-
:label: fourier_transform
331+
:label: eq:ft1
332332
333333
x(\omega_j) = \sum_{t=0}^{T-1} x_t \exp(-i \omega_j t)
334334
```
@@ -338,7 +338,7 @@ where $\omega_j = \frac{2\pi j}{T}$ for $j = 0, 1, \ldots, T-1$.
338338
The **inverse Fourier transform** of the sequence $\{x(\omega_j)\}_{j=0}^{T-1}$ is
339339

340340
```{math}
341-
:label: inverse_fourier_transform
341+
:label: eq:ift1
342342
343343
x_t = T^{-1} \sum_{j=0}^{T-1} x(\omega_j) \exp(i \omega_j t)
344344
```
@@ -488,7 +488,7 @@ $$
488488
or
489489

490490
```{math}
491-
:label: system_failure_prob
491+
:label: eq:probtop
492492
493493
P(F) \approx \sum_{i=1}^n P(A_i)
494494
```

0 commit comments

Comments
 (0)