@@ -553,7 +553,7 @@ that we set
553553``` {code-cell} ipython3
554554# This is a 'manual' method
555555
556- def y_nonstochastic(y_0=100, y_1=80, α =.92, β =.5, γ=10, n=80):
556+ def y_nonstochastic(y_0=100, y_1=80, a =.92, b =.5, γ=10, n=80):
557557
558558 """Takes values of parameters and computes the roots of characteristic
559559 polynomial. It tells whether they are real or complex and whether they
@@ -564,8 +564,8 @@ def y_nonstochastic(y_0=100, y_1=80, α=.92, β=.5, γ=10, n=80):
564564
565565 roots = []
566566
567- ρ1 = α + β
568- ρ2 = -β
567+ ρ1 = a + b
568+ ρ2 = -b
569569
570570 print(f'ρ_1 is {ρ1}')
571571 print(f'ρ_2 is {ρ2}')
@@ -687,16 +687,16 @@ print(f"ρ1, ρ2 = {ρ1}, {ρ2}")
687687##=== This method uses numpy to calculate roots ===#
688688
689689
690- def y_nonstochastic(y_0=100, y_1=80, α =.9, β =.8, γ=10, n=80):
690+ def y_nonstochastic(y_0=100, y_1=80, a =.9, b =.8, γ=10, n=80):
691691
692692 """ Rather than computing the roots of the characteristic
693693 polynomial by hand as we did earlier, this function
694694 enlists numpy to do the work for us
695695 """
696696
697697 # Useful constants
698- ρ1 = α + β
699- ρ2 = -β
698+ ρ1 = a + b
699+ ρ2 = -b
700700
701701 categorize_solution(ρ1, ρ2)
702702
@@ -754,7 +754,7 @@ b = b.real
754754
755755print(f"a, b = {a}, {b}")
756756
757- ytemp = y_nonstochastic(α =a, β =b, y_0=20, y_1=30)
757+ ytemp = y_nonstochastic(a =a, b =b, y_0=20, y_1=30)
758758plot_y(ytemp)
759759```
760760
@@ -773,8 +773,8 @@ sympy.solve(z**2 - r1*z - r2, z)
773773```
774774
775775``` {code-cell} ipython3
776- a = Symbol("α ")
777- b = Symbol("β ")
776+ a = Symbol("a ")
777+ b = Symbol("b ")
778778r1 = a + b
779779r2 = -b
780780
@@ -788,16 +788,16 @@ model that emerges when we add a random shock process to aggregate
788788demand
789789
790790``` {code-cell} ipython3
791- def y_stochastic(y_0=0, y_1=0, α =0.8, β =0.2, γ=10, n=100, σ=5):
791+ def y_stochastic(y_0=0, y_1=0, a =0.8, b =0.2, γ=10, n=100, σ=5):
792792
793793 """This function takes parameters of a stochastic version of
794794 the model and proceeds to analyze the roots of the characteristic
795795 polynomial and also generate a simulation.
796796 """
797797
798798 # Useful constants
799- ρ1 = α + β
800- ρ2 = -β
799+ ρ1 = a + b
800+ ρ2 = -b
801801
802802 # Categorize solution
803803 categorize_solution(ρ1, ρ2)
@@ -854,7 +854,7 @@ a = a.real
854854b = b.real
855855
856856print(f"a, b = {a}, {b}")
857- plot_y(y_stochastic(y_0=40, y_1 = 42, α =a, β =b, σ=2, n=100))
857+ plot_y(y_stochastic(y_0=40, y_1 = 42, a =a, b =b, σ=2, n=100))
858858```
859859
860860## Government spending
@@ -865,8 +865,8 @@ in government expenditures
865865``` {code-cell} ipython3
866866def y_stochastic_g(y_0=20,
867867 y_1=20,
868- α =0.8,
869- β =0.2,
868+ a =0.8,
869+ b =0.2,
870870 γ=10,
871871 n=100,
872872 σ=2,
@@ -879,8 +879,8 @@ def y_stochastic_g(y_0=20,
879879 """
880880
881881 # Useful constants
882- ρ1 = α + β
883- ρ2 = -β
882+ ρ1 = a + b
883+ ρ2 = -b
884884
885885 # Categorize solution
886886 categorize_solution(ρ1, ρ2)
@@ -984,9 +984,9 @@ class Samuelson():
984984 Initial condition for Y_0
985985 y_1 : scalar
986986 Initial condition for Y_1
987- α : scalar
987+ a : scalar
988988 Marginal propensity to consume
989- β : scalar
989+ b : scalar
990990 Accelerator coefficient
991991 n : int
992992 Number of iterations
@@ -1007,20 +1007,20 @@ class Samuelson():
10071007 def __init__(self,
10081008 y_0=100,
10091009 y_1=50,
1010- α =1.3,
1011- β =0.2,
1010+ a =1.3,
1011+ b =0.2,
10121012 γ=10,
10131013 n=100,
10141014 σ=0,
10151015 g=0,
10161016 g_t=0,
10171017 duration=None):
10181018
1019- self.y_0, self.y_1, self.α , self.β = y_0, y_1, α, β
1019+ self.y_0, self.y_1, self.a , self.b = y_0, y_1, a, b
10201020 self.n, self.g, self.g_t, self.duration = n, g, g_t, duration
10211021 self.γ, self.σ = γ, σ
1022- self.ρ1 = α + β
1023- self.ρ2 = -β
1022+ self.ρ1 = a + b
1023+ self.ρ2 = -b
10241024 self.roots = np.roots([1, -self.ρ1, -self.ρ2])
10251025
10261026 def root_type(self):
@@ -1122,7 +1122,7 @@ class Samuelson():
11221122 ax.grid()
11231123
11241124 # Add parameter values to plot
1125- paramstr = f'$\\alpha ={self.α :.2f}$ \n $\\beta ={self.β :.2f}$ \n \
1125+ paramstr = f'$a ={self.a :.2f}$ \n $b ={self.b :.2f}$ \n \
11261126 $\\gamma={self.γ:.2f}$ \n $\\sigma={self.σ:.2f}$ \n \
11271127 $\\rho_1={self.ρ1:.2f}$ \n $\\rho_2={self.ρ2:.2f}$'
11281128 props = dict(fc='white', pad=10, alpha=0.5)
@@ -1163,7 +1163,7 @@ class Samuelson():
11631163Now we'll put our Samuelson class to work on an example
11641164
11651165``` {code-cell} ipython3
1166- sam = Samuelson(α =0.8, β =0.5, σ=2, g=10, g_t=20, duration='permanent')
1166+ sam = Samuelson(a =0.8, b =0.5, σ=2, g=10, g_t=20, duration='permanent')
11671167sam.summary()
11681168```
11691169
@@ -1197,10 +1197,10 @@ Here is how we map the Samuelson model into an instance of a
11971197"""This script maps the Samuelson model in the the
11981198``LinearStateSpace`` class
11991199"""
1200- α = 0.8
1201- β = 0.9
1202- ρ1 = α + β
1203- ρ2 = -β
1200+ a = 0.8
1201+ b = 0.9
1202+ ρ1 = a + b
1203+ ρ2 = -b
12041204γ = 10
12051205σ = 1
12061206g = 10
@@ -1211,8 +1211,8 @@ A = [[1, 0, 0],
12111211 [0, 1, 0]]
12121212
12131213G = [[γ + g, ρ1, ρ2], # this is Y_{t+1}
1214- [γ, α , 0], # this is C_{t+1}
1215- [0, β , -β ]] # this is I_{t+1}
1214+ [γ, a , 0], # this is C_{t+1}
1215+ [0, b , -b ]] # this is I_{t+1}
12161216
12171217μ_0 = [1, 100, 50]
12181218C = np.zeros((3,1))
@@ -1272,21 +1272,21 @@ class SamuelsonLSS(LinearStateSpace):
12721272 def __init__(self,
12731273 y_0=100,
12741274 y_1=50,
1275- α =0.8,
1276- β =0.9,
1275+ a =0.8,
1276+ b =0.9,
12771277 γ=10,
12781278 σ=1,
12791279 g=10):
12801280
1281- self.α , self.β = α, β
1281+ self.a , self.b = a, b
12821282 self.y_0, self.y_1, self.g = y_0, y_1, g
12831283 self.γ, self.σ = γ, σ
12841284
12851285 # Define intial conditions
12861286 self.μ_0 = [1, y_0, y_1]
12871287
1288- self.ρ1 = α + β
1289- self.ρ2 = -β
1288+ self.ρ1 = a + b
1289+ self.ρ2 = -b
12901290
12911291 # Define transition matrix
12921292 self.A = [[1, 0, 0],
@@ -1295,8 +1295,8 @@ class SamuelsonLSS(LinearStateSpace):
12951295
12961296 # Define output matrix
12971297 self.G = [[γ + g, self.ρ1, self.ρ2], # this is Y_{t+1}
1298- [γ, α , 0], # this is C_{t+1}
1299- [0, β , -β ]] # this is I_{t+1}
1298+ [γ, a , 0], # this is C_{t+1}
1299+ [0, b , -b ]] # this is I_{t+1}
13001300
13011301 self.C = np.zeros((3, 1))
13021302 self.C[1] = σ # stochastic
@@ -1403,15 +1403,15 @@ multiplier model
14031403 accelerator
14041404
14051405``` {code-cell} ipython3
1406- pure_multiplier = SamuelsonLSS(α =0.95, β =0)
1406+ pure_multiplier = SamuelsonLSS(a =0.95, b =0)
14071407```
14081408
14091409``` {code-cell} ipython3
14101410pure_multiplier.plot_simulation()
14111411```
14121412
14131413``` {code-cell} ipython3
1414- pure_multiplier = SamuelsonLSS(α =0.8, β =0)
1414+ pure_multiplier = SamuelsonLSS(a =0.8, b =0)
14151415```
14161416
14171417``` {code-cell} ipython3
0 commit comments