273273where
274274
275275$$
276- p\left(Y\right)=\int p\left(Y\mid\theta\right)p\left(Y \right) d\theta.
276+ p\left(Y\right)=\int p\left(Y\mid\theta\right)p\left(\theta \right) d\theta.
277277$$ (eq:intchallenge)
278278
279279The integral on the right side of {eq}`eq:intchallenge` is typically difficult to compute.
@@ -297,7 +297,7 @@ Note that
297297$$
298298\begin{aligned}D_ {KL}(q(\theta;\phi)\;\|\; p(\theta\mid Y)) & =-\int q(\theta;\phi)\log\frac{P(\theta\mid Y)}{q(\theta;\phi)} d\theta\\
299299 & =-\int q(\theta)\log\frac{\frac{p(\theta,Y)}{p(Y)}}{q(\theta)} d\theta\\
300- & =-\int q(\theta)\log\frac{p(\theta,Y)}{p (\theta)q (Y)} d\theta\\
300+ & =-\int q(\theta)\log\frac{p(\theta,Y)}{q (\theta)p (Y)} d\theta\\
301301 & =-\int q(\theta)\left[ \log\frac{p(\theta,Y)}{q(\theta)}-\log p(Y)\right] d\theta\\
302302 & =-\int q(\theta)\log\frac{p(\theta,Y)}{q(\theta)}+\int q(\theta)\log p(Y) d\theta\\
303303 & =-\int q(\theta)\log\frac{p(\theta,Y)}{q(\theta)} d\theta+\log p(Y)\\
@@ -406,7 +406,7 @@ def sample_prior(model: BayesianInference):
406406
407407 elif model.name_dist == "vonMises":
408408 # unpack parameters
409- kappa = model.param
409+ kappa, = model.param
410410 sample = numpyro.sample(
411411 "theta", ShiftedVonMises(kappa), rng_key=model.rng_key
412412 )
@@ -425,7 +425,8 @@ def show_prior(
425425 model: BayesianInference, size=1e5, bins=20, disp_plot=1
426426 ):
427427 """
428- Visualizes prior distribution by sampling from prior and plots the approximated sampling distribution
428+ Visualizes prior distribution by sampling from prior
429+ and plots the approximated sampling distribution
429430 """
430431 with numpyro.plate("show_prior", size=size):
431432 sample = sample_prior(model)
0 commit comments