@@ -201,7 +201,7 @@ def AR1_model(data):
201201 yhat = ρ * data[:-1]
202202
203203 # Likelihood of the actual realization.
204- y_data = numpyro.sample('y_obs',
204+ numpyro.sample('y_obs',
205205 dist.Normal(loc=yhat, scale=σ), obs=data[1:])
206206
207207```
@@ -226,7 +226,7 @@ plot_posterior(mcmc.get_samples())
226226
227227Evidently, the posteriors aren't centered on the true values of $.5, 1$ that we used to generate the data.
228228
229- This is a symptom of the classic **Hurwicz bias** for first order autoregressive processes (see Leonid Hurwicz {cite}`hurwicz1950least`.)
229+ This is a symptom of the classic **Hurwicz bias** for first order autoregressive processes (see {cite}`hurwicz1950least`.)
230230
231231The Hurwicz bias is worse the smaller is the sample (see {cite}`Orcutt_Winokur_69`).
232232
@@ -259,9 +259,9 @@ def AR1_model_y0(data):
259259 yhat = ρ * data[:-1]
260260
261261 # Likelihood of the actual realization.
262- y_data = numpyro.sample('y_obs',
262+ numpyro.sample('y_obs',
263263 dist.Normal(loc=yhat, scale=σ), obs=data[1:])
264- y0_data = numpyro.sample('y0_obs',
264+ numpyro.sample('y0_obs',
265265 dist.Normal(loc=0., scale=y_sd), obs=data[0])
266266```
267267
0 commit comments