22from numba .experimental import jitclass
33
44opt_growth_data = [
5- ('α' , float64 ), # Production parameter
6- ('β' , float64 ), # Discount factor
7- ('μ' , float64 ), # Shock location parameter
8- ('s' , float64 ), # Shock scale parameter
9- ('grid' , float64 [:]), # Grid (array)
10- ('shocks' , float64 [:]) # Shock draws (array)
5+ ('α' , float64 ), # 生产参数
6+ ('β' , float64 ), # 折现因子
7+ ('μ' , float64 ), # 冲击的均值参数
8+ ('s' , float64 ), # 冲击的尺度参数
9+ ('grid' , float64 [:]), # 网格(数组)
10+ ('shocks' , float64 [:]) # 冲击样本(数组)
1111]
1212
1313@jitclass (opt_growth_data )
@@ -25,32 +25,32 @@ def __init__(self,
2525
2626 self .α , self .β , self .μ , self .s = α , β , μ , s
2727
28- # Set up grid
28+ # 设置网格
2929 self .grid = np .linspace (1e-5 , grid_max , grid_size )
3030
31- # Store shocks (with a seed, so results are reproducible)
31+ # 存储冲击(设置随机种子以确保结果可重复)
3232 np .random .seed (seed )
3333 self .shocks = np .exp (μ + s * np .random .randn (shock_size ))
3434
3535
3636 def f (self , k ):
37- "The production function "
37+ "生产函数 "
3838 return k ** self .α
3939
4040
4141 def u (self , c ):
42- "The utility function "
42+ "效用函数 "
4343 return np .log (c )
4444
4545 def f_prime (self , k ):
46- "Derivative of f "
46+ "生产函数的一阶导数 "
4747 return self .α * (k ** (self .α - 1 ))
4848
4949
5050 def u_prime (self , c ):
51- "Derivative of u "
51+ "效用函数的一阶导数 "
5252 return 1 / c
5353
5454 def u_prime_inv (self , c ):
55- "Inverse of u' "
55+ "效用函数一阶导数的反函数 "
5656 return 1 / c
0 commit comments