Skip to content

Commit 778e3e1

Browse files
committed
updates
1 parent e73bdc9 commit 778e3e1

File tree

7 files changed

+1219
-1174
lines changed

7 files changed

+1219
-1174
lines changed

lectures/imp_sample.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,10 @@ kernelspec:
3333
import numpy as np
3434
from numba import jit, vectorize, prange
3535
import matplotlib.pyplot as plt
36+
FONTPATH = "fonts/SourceHanSerifSC-SemiBold.otf"
37+
mpl.font_manager.fontManager.addfont(FONTPATH)
38+
plt.rcParams['font.family'] = ['Source Han Serif SC']
39+
3640
from math import gamma
3741
```
3842

lectures/likelihood_bayes.md

Lines changed: 220 additions & 315 deletions
Large diffs are not rendered by default.

lectures/likelihood_ratio_process.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -52,6 +52,10 @@ kernelspec:
5252

5353
```{code-cell} ipython3
5454
import matplotlib.pyplot as plt
55+
FONTPATH = "fonts/SourceHanSerifSC-SemiBold.otf"
56+
mpl.font_manager.fontManager.addfont(FONTPATH)
57+
plt.rcParams['font.family'] = ['Source Han Serif SC']
58+
5559
import numpy as np
5660
from numba import vectorize, jit
5761
from math import gamma

lectures/likelihood_ratio_process_2.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,10 @@ Blume和Easley构建了正式模型,研究关于风险收入过程概率的不
5555

5656
```{code-cell} ipython3
5757
import matplotlib.pyplot as plt
58+
FONTPATH = "fonts/SourceHanSerifSC-SemiBold.otf"
59+
mpl.font_manager.fontManager.addfont(FONTPATH)
60+
plt.rcParams['font.family'] = ['Source Han Serif SC']
61+
5862
import numpy as np
5963
from numba import vectorize, jit, prange
6064
from math import gamma

lectures/likelihood_var.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,6 +47,10 @@ kernelspec:
4747
```{code-cell} ipython3
4848
import numpy as np
4949
import matplotlib.pyplot as plt
50+
FONTPATH = "fonts/SourceHanSerifSC-SemiBold.otf"
51+
mpl.font_manager.fontManager.addfont(FONTPATH)
52+
plt.rcParams['font.family'] = ['Source Han Serif SC']
53+
5054
from scipy import linalg
5155
from scipy.stats import multivariate_normal as mvn
5256
from quantecon import LinearStateSpace

lectures/wald_friedman.md

Lines changed: 976 additions & 562 deletions
Large diffs are not rendered by default.

tools/translation_history.json

Lines changed: 7 additions & 297 deletions
Original file line numberDiff line numberDiff line change
@@ -1,302 +1,12 @@
11
{
2-
"lectures/perm_income.md": {
3-
"hash": "8027e12b0d1a509907cf469ee574341d",
4-
"last_modified": 1742193379.0191963,
5-
"last_translated": 1742195625.260733
6-
},
7-
"lectures/troubleshooting.md": {
8-
"hash": "2c84670ef7e7723c08b6906e5b72fb27",
9-
"last_modified": 1742193379.0697775,
10-
"last_translated": 1742195639.494167
11-
},
12-
"lectures/ge_arrow.md": {
13-
"hash": "5c1af49891e38f2d26aeaf8fe7e5bf8b",
14-
"last_modified": 1742193378.837432,
15-
"last_translated": 1742195713.635284
16-
},
17-
"lectures/wealth_dynamics.md": {
18-
"hash": "759f0e7adb0e82e62b7b41eec57c80d8",
19-
"last_modified": 1742193379.101374,
20-
"last_translated": 1742195763.19976
21-
},
22-
"lectures/mix_model.md": {
23-
"hash": "884a2c9dac28974be201e2e5f7bd6481",
24-
"last_modified": 1742193378.9612448,
25-
"last_translated": 1742195875.9428968
26-
},
27-
"lectures/re_with_feedback.md": {
28-
"hash": "80762c68f36d7a3eca6256df085c8661",
29-
"last_modified": 1742193379.045698,
30-
"last_translated": 1742195997.016331
31-
},
32-
"lectures/inventory_dynamics.md": {
33-
"hash": "7fde683e1116b79773ed882b5df2e5f9",
34-
"last_modified": 1742193378.876982,
35-
"last_translated": 1742196065.7237408
36-
},
37-
"lectures/intro.md": {
38-
"hash": "a01cc0acbf3d97c9a82d8f3f018d4219",
39-
"last_modified": 1742193378.871891,
40-
"last_translated": 1742196068.084739
41-
},
42-
"lectures/status.md": {
43-
"hash": "ccf79b1f0f147e0e44607e07c8eaa5fc",
44-
"last_modified": 1742193379.0599775,
45-
"last_translated": 1742196071.0216908
46-
},
47-
"lectures/wald_friedman.md": {
48-
"hash": "c8d683dc458776645ba188326ec11ea5",
49-
"last_modified": 1742193379.0955558,
50-
"last_translated": 1742196088.6650162
51-
},
52-
"lectures/sir_model.md": {
53-
"hash": "e05399a3b0caa38b8c9553ff4b3d365f",
54-
"last_modified": 1742193379.0544574,
55-
"last_translated": 1742196158.392222
56-
},
57-
"lectures/opt_transport.md": {
58-
"hash": "393a5dad449f553cb6ba07df145686ee",
59-
"last_modified": 1742193378.9963984,
60-
"last_translated": 1742196255.114292
61-
},
62-
"lectures/mccall_model.md": {
63-
"hash": "cc395ec5222ba30f1d81540555e82286",
64-
"last_modified": 1742193378.9537675,
65-
"last_translated": 1742196305.3139808
66-
},
67-
"lectures/multi_hyper.md": {
68-
"hash": "c85e2ae2df4ff99ac3414ee9efc90c95",
69-
"last_modified": 1742193378.9702873,
70-
"last_translated": 1742196401.9877381
71-
},
72-
"lectures/mle.md": {
73-
"hash": "8c30dadee541133b4c05d5efcd3c1cf9",
74-
"last_modified": 1742193378.9635065,
75-
"last_translated": 1742196440.125151
76-
},
77-
"lectures/mccall_q.md": {
78-
"hash": "c5036eb7510b4f32dd80e61bced7c200",
79-
"last_modified": 1742193378.9558287,
80-
"last_translated": 1742196582.39528
81-
},
82-
"lectures/lln_clt.md": {
83-
"hash": "23b66956f1b1f6c25ff67776461cafb1",
84-
"last_modified": 1742193378.914302,
85-
"last_translated": 1742196640.484413
86-
},
87-
"lectures/hoist_failure.md": {
88-
"hash": "60e67e5ab745dc0c255075a41d47674e",
89-
"last_modified": 1742193378.8519914,
90-
"last_translated": 1742196740.1205518
91-
},
92-
"lectures/newton_method.md": {
93-
"hash": "90acc29bed46418ef80cd25614d7e48d",
94-
"last_modified": 1742193378.9850743,
95-
"last_translated": 1742196841.399981
96-
},
97-
"lectures/perm_income_cons.md": {
98-
"hash": "76b90a427ce9569af557007a559ff832",
99-
"last_modified": 1742193379.0140722,
100-
"last_translated": 1742196915.739697
101-
},
102-
"lectures/imp_sample.md": {
103-
"hash": "e17acfbbe72f108c14f4fd8b9a0017f5",
104-
"last_modified": 1742193378.8693507,
105-
"last_translated": 1742196961.0119739
106-
},
107-
"lectures/optgrowth_fast.md": {
108-
"hash": "ce84215df06b2f0cd1e4482f34364018",
109-
"last_modified": 1742193379.0014524,
110-
"last_translated": 1742196984.558659
111-
},
112-
"lectures/harrison_kreps.md": {
113-
"hash": "9926045884f3baf3b7f31b5c92aea79d",
114-
"last_modified": 1742193378.846141,
115-
"last_translated": 1742197100.608493
116-
},
117-
"lectures/lq_inventories.md": {
118-
"hash": "77dcb75b14f4783569107f7e1024a8d4",
119-
"last_modified": 1742193378.9191923,
120-
"last_translated": 1742197149.3313339
121-
},
122-
"lectures/markov_asset.md": {
123-
"hash": "1a7bd355889513557ed03796c0ce51d8",
124-
"last_modified": 1742193378.9297526,
125-
"last_translated": 1742197306.7671838
126-
},
127-
"lectures/rational_expectations.md": {
128-
"hash": "a257b6faf4f11a9a7772f9699869df71",
129-
"last_modified": 1742193379.0426712,
130-
"last_translated": 1742197343.752576
131-
},
132-
"lectures/markov_perf.md": {
133-
"hash": "506269428d3fd62e248173bbe5a419b2",
134-
"last_modified": 1742193378.9348679,
135-
"last_translated": 1742197511.658255
136-
},
137-
"lectures/lqcontrol.md": {
138-
"hash": "bb464e1c4d95d4e38ec5faeb008d56d1",
139-
"last_modified": 1742193378.9212067,
140-
"last_translated": 1742197617.224051
141-
},
142-
"lectures/kalman.md": {
143-
"hash": "fb7f5dc140a6f1c4307cb47e063131e9",
144-
"last_modified": 1742193378.8878865,
145-
"last_translated": 1742197682.1539981
146-
},
147-
"lectures/ifp.md": {
148-
"hash": "1d4e20d4123f2cb8a94e6a9889982654",
149-
"last_modified": 1742193378.863815,
150-
"last_translated": 1742197752.9636989
151-
},
152-
"lectures/two_auctions.md": {
153-
"hash": "38d9f21e41d4dc5b39e93fd47bb8d57f",
154-
"last_modified": 1742193379.0723503,
155-
"last_translated": 1742197921.121033
156-
},
157-
"lectures/multivariate_normal.md": {
158-
"hash": "bd97f06b8faf790607480fc51e65cda6",
159-
"last_modified": 1742193378.9759977,
160-
"last_translated": 1742198117.018036
161-
},
162-
"lectures/von_neumann_model.md": {
163-
"hash": "62daa80d47eff134a750ca5fe17f168a",
164-
"last_modified": 1742193379.08927,
165-
"last_translated": 1742198145.139241
166-
},
167-
"lectures/optgrowth.md": {
168-
"hash": "00b9207d2e3e93ce09b7c317d3a96e41",
169-
"last_modified": 1742193379.004255,
170-
"last_translated": 1742198267.2342458
171-
},
172-
"lectures/exchangeable.md": {
173-
"hash": "0ad6e8dde08608a5bd94104b7f8e196b",
174-
"last_modified": 1742193378.8295267,
175-
"last_translated": 1742198429.900707
176-
},
177-
"lectures/house_auction.md": {
178-
"hash": "3fc55cbb73d9b5e6945647b87c763815",
179-
"last_modified": 1742193378.8548117,
180-
"last_translated": 1742198437.5134678
181-
},
182-
"lectures/qr_decomp.md": {
183-
"hash": "2fca6392c1b7f75445fa9df4cabd12ef",
184-
"last_modified": 1742193379.0342953,
185-
"last_translated": 1742198528.4649339
186-
},
187-
"lectures/linear_algebra.md": {
188-
"hash": "57bd335602a5958cffbe7fa10a0a2953",
189-
"last_modified": 1742193378.9092934,
190-
"last_translated": 1742198689.9288461
191-
},
192-
"lectures/linear_models.md": {
193-
"hash": "156209c657fd72a3ea8c65502005eb79",
194-
"last_modified": 1742193378.9121091,
195-
"last_translated": 1742198780.757025
196-
},
197-
"lectures/zreferences.md": {
198-
"hash": "956de42c96df5c0e7c70590014dc0e31",
199-
"last_modified": 1742193379.11044,
200-
"last_translated": 1742198782.231174
201-
},
202-
"lectures/kalman_2.md": {
203-
"hash": "b9fc1572a88d78ddc8f42126bc58b92f",
204-
"last_modified": 1742193378.88552,
205-
"last_translated": 1742198810.754369
206-
},
207-
"lectures/mccall_fitted_vfi.md": {
208-
"hash": "e67afeb5fc464a1d2644ef690f101a02",
209-
"last_modified": 1742193378.9436839,
210-
"last_translated": 1742198853.689048
211-
},
212-
"lectures/svd_intro.md": {
213-
"hash": "c8a003f6357cf33f21f8ae324312d4d7",
214-
"last_modified": 1742193379.0668964,
215-
"last_translated": 1742199013.526934
216-
},
217-
"lectures/navy_captain.md": {
218-
"hash": "27066ce06854d454a2a20c274a71bf8b",
219-
"last_modified": 1742193378.9789858,
220-
"last_translated": 1742199085.416687
221-
},
222-
"lectures/likelihood_ratio_process.md": {
223-
"hash": "7c60c77d7c212e5346d4ba3832ef16c5",
224-
"last_modified": 1742193378.9042053,
225-
"last_translated": 1742199156.0807118
226-
},
227-
"lectures/samuelson.md": {
228-
"hash": "fba9a962771f0e5fcd7a355151c50e54",
229-
"last_modified": 1742193379.0515208,
230-
"last_translated": 1742199337.5519428
231-
},
232-
"lectures/rand_resp.md": {
233-
"hash": "09ecaee3eb9fc39a3cd2aaa72e39cd02",
234-
"last_modified": 1742193379.0371559,
235-
"last_translated": 1742199404.1484952
236-
},
237-
"lectures/prob_matrix.md": {
238-
"hash": "f15664657964d61f02d20ff649b379a7",
239-
"last_modified": 1742193379.021947,
240-
"last_translated": 1742199522.715189
241-
},
242-
"lectures/prob_meaning.md": {
243-
"hash": "2ad3ae151b17ce1f1b070554571e3523",
244-
"last_modified": 1742465863.4871967,
245-
"last_translated": 1742466049.2771358
246-
},
247-
"lectures/jv.md": {
248-
"hash": "68670074d3605d458cf3e1e0b8c89e1a",
249-
"last_modified": 1742193378.8791728,
250-
"last_translated": 1742199620.436908
251-
},
252-
"lectures/uncertainty_traps.md": {
253-
"hash": "8eecdf545e0c5371d8f2a253457ee92e",
254-
"last_modified": 1742193379.0778549,
255-
"last_translated": 1742199674.7539442
256-
},
257-
"lectures/var_dmd.md": {
258-
"hash": "e8ff98e60b4b72b993128c70641aa3a0",
259-
"last_modified": 1742193379.0861392,
260-
"last_translated": 1742199786.197601
261-
},
262-
"lectures/pandas_panel.md": {
263-
"hash": "5d2afad65271a27e26903127e1016295",
264-
"last_modified": 1742193379.011166,
265-
"last_translated": 1742199905.266813
266-
},
267-
"lectures/finite_markov.md": {
268-
"hash": "f65f1d7fd99a2094306235a113f01a75",
269-
"last_modified": 1742193378.8350585,
270-
"last_translated": 1742199944.471071
271-
},
272-
"lectures/ols.md": {
273-
"hash": "6f7a2389184c055974972f7151422cc5",
274-
"last_modified": 1742193378.9938638,
275-
"last_translated": 1742200074.232906
276-
},
277-
"lectures/odu.md": {
278-
"hash": "31ce9e27af6645da6de53ba4f3ab78c8",
279-
"last_modified": 1742193378.9884832,
280-
"last_translated": 1742200102.301013
281-
},
282-
"lectures/lagrangian_lqdp.md": {
283-
"hash": "342c4b7eb715bd072c347a1028dd7acb",
284-
"last_modified": 1742203569.55142,
285-
"last_translated": 1742203760.230793
286-
},
2872
"lectures/likelihood_bayes.md": {
288-
"hash": "63eccc98317151b4bc0c83af31b395bc",
289-
"last_modified": 1742203837.8098228,
290-
"last_translated": 1742204007.591847
291-
},
292-
"lectures/util_rand_resp.md": {
293-
"hash": "8b7e183efc2092e438dc5a6cc6a1ab03",
294-
"last_modified": 1742786858.046247,
295-
"last_translated": 1742787114.4174118
3+
"hash": "b6558dc1d8da30c7d0243d39849894f4",
4+
"last_modified": 1757642355.350762,
5+
"last_translated": 1757644222.9616024
2966
},
297-
"lectures/divergence_measures copy.md": {
298-
"hash": "e581df8f314bfaaae2bab1e6ef084a93",
299-
"last_modified": 1757642546.8124344,
300-
"last_translated": 1757643539.7492318
7+
"lectures/wald_friedman.md": {
8+
"hash": "e2a33cd4e5b01b470d22c09640cdde9c",
9+
"last_modified": 1757644091.1972508,
10+
"last_translated": 1757644502.7967446
30111
}
30212
}

0 commit comments

Comments
 (0)