@@ -330,7 +330,7 @@ function
330330
331331In our setting, we have the following key result
332332
333- *A feasible consumption policy is optimal if and only if it is * :math: `v^*`-* greedy *
333+ * A feasible consumption policy is optimal if and only if it is :math: `v^*`-greedy
334334
335335The intuition is similar to the intuition for the Bellman equation, which was
336336provided after :eq: `fpb30 `
@@ -561,8 +561,8 @@ Optimal Growth Model
561561
562562We will hold the primitives of the optimal growth model in a class
563563
564- The distribution $ \p hi $ of the shock is assumed to be lognormal,
565- and so a draw from $ \e xp(\m u + \s igma \z eta) $ when $ \z eta $ is standard normal
564+ The distribution :math: ` \phi ` of the shock is assumed to be lognormal,
565+ and so a draw from :math: ` \exp (\mu + \sigma \zeta )` when :math: ` \zeta ` is standard normal
566566
567567.. code-block :: python3
568568
@@ -595,7 +595,7 @@ Here's a function that generates a Bellman operator using linear interpolation
595595
596596 def bellman_function_factory(og, parallel_flag=True):
597597
598- '''og is an OptimalGrowthModel'''
598+ '''og is an instance of the OptimalGrowthModel'''
599599
600600 f, u = og.f, og.u
601601 y_grid, shocks = og.y_grid, og.shocks
@@ -626,8 +626,8 @@ Here's a function that generates a Bellman operator using linear interpolation
626626
627627 return T, get_greedy
628628
629- The ` generate_T_operator ` function takes a class that represents the growth model,
630- and returns a function `T ` that we will use to solve the model
629+ ` bellman_function_factory ` takes a class that represents the growth model,
630+ and returns the operator ` T ` and a function `get_greedy ` that we will use to solve the model
631631
632632Notice that the expectation in :eq: `fcbell20_optgrowth ` is computed via Monte Carlo, using the approximation
633633
@@ -850,8 +850,9 @@ The Policy Function
850850.. index ::
851851 single: Optimal Growth; Policy Function
852852
853- To compute an approximate optimal policy, we will write a function
854- that backs out the optimal policy from the optimal wage rate
853+ To compute an approximate optimal policy, we will use the second function
854+ return from `bellman_function_factory ` that backs out the optimal policy
855+ from the optimal wage rate
855856
856857The next figure compares the result to the exact solution, which, as mentioned
857858above, is :math: `\sigma (y) = (1 - \alpha \beta ) y`
0 commit comments