|
35 | 35 | from . import units |
36 | 36 |
|
37 | 37 |
|
| 38 | +def project_out_rigid(X_t, R_t, M): |
| 39 | + """ |
| 40 | + Remove rigid-body translations and rotations from a snapshot vector |
| 41 | + (coordinates, velocities, or accelerations), assuming the mass vector |
| 42 | + M has length 3N (one mass per Cartesian DOF). |
| 43 | +
|
| 44 | + The projection removes the six rigid-body modes for a nonlinear molecule: |
| 45 | + - 3 translational modes |
| 46 | + - 3 rotational modes |
| 47 | +
|
| 48 | + Equations: |
| 49 | +
|
| 50 | + Translation basis: |
| 51 | + t_alpha = sqrt(m_i) * e_alpha |
| 52 | + Rotation basis: |
| 53 | + r_alpha = sqrt(m_i) * (R_i - R_CM) × e_alpha |
| 54 | + Projected vector: |
| 55 | + X_proj = X - P P^T X |
| 56 | + Mass-weighted covariance matrices: |
| 57 | + K_ij^δr = 1/2 < sqrt(m_i m_j) δr_i δr_j > |
| 58 | + K_ij^v = 1/2 < sqrt(m_i m_j) v_i v_j > |
| 59 | + K_ij^a = 1/2 < sqrt(m_i m_j) a_i a_j > |
| 60 | +
|
| 61 | + Args: |
| 62 | + X_t : np.ndarray of shape (3*N,) |
| 63 | + Input vector to project (coordinates, velocities, or accelerations) |
| 64 | + R_t : np.ndarray of shape (3*N,) |
| 65 | + Instantaneous Cartesian positions of atoms (used to construct rotation basis) |
| 66 | + M : np.ndarray of shape (3*N,) |
| 67 | + Mass vector per Cartesian degree of freedom |
| 68 | +
|
| 69 | + Returns: |
| 70 | + X_proj : np.ndarray of shape (3*N,) |
| 71 | + Projected vector with rigid translations and rotations removed |
| 72 | +
|
| 73 | + Example: |
| 74 | + >>> import numpy as np |
| 75 | + >>> N_atoms = 5 |
| 76 | + >>> M_atom = np.array([12.0, 16.0, 16.0, 1.0, 1.0]) |
| 77 | + >>> M = np.repeat(M_atom, 3) # length 3*N |
| 78 | + >>> R = np.random.rand(3*N_atoms*3) # 3 DOF per atom |
| 79 | + >>> X = np.random.rand(3*N_atoms*3) |
| 80 | + >>> R_proj = project_out_rigid(R, R, M) |
| 81 | + >>> X_proj = project_out_rigid(X, R, M) |
| 82 | + """ |
| 83 | + if X_t.shape != R_t.shape or X_t.shape != M.shape: |
| 84 | + raise ValueError(f"Shapes of X_t {X_t.shape}, R_t {R_t.shape}, and M {M.shape} must match (all 3N,)") |
| 85 | + |
| 86 | + N = X_t.size // 3 # number of atoms |
| 87 | + X = X_t.reshape(N, 3) |
| 88 | + R = R_t.reshape(N, 3) |
| 89 | + |
| 90 | + # ----- 1. Remove translation ----- |
| 91 | + M3 = M.reshape(N,3) |
| 92 | + X_trans = X - np.sum(M3 * X, axis=0) / np.sum(M) * 3 # remove COM motion |
| 93 | + |
| 94 | + # Center R for rotation basis |
| 95 | + R_CM = np.sum(M3 * R, axis=0) / np.sum(M) |
| 96 | + R_cm = R - R_CM |
| 97 | + |
| 98 | + # ----- 2. Build rotation basis (3 vectors) ----- |
| 99 | + rot_basis = np.zeros((3*N, 3)) |
| 100 | + unit_vectors = np.eye(3) |
| 101 | + for alpha in range(3): |
| 102 | + cross = np.cross(R_cm, unit_vectors[alpha]) # shape (N,3) |
| 103 | + rot_basis[:, alpha] = np.ravel(cross * np.sqrt(M3)) |
| 104 | + |
| 105 | + # ----- 3. Build translation basis (3 vectors) ----- |
| 106 | + trans_basis = np.zeros((3*N,3)) |
| 107 | + for alpha in range(3): |
| 108 | + vec = np.zeros((N,3)) |
| 109 | + vec[:, alpha] = 1.0 |
| 110 | + trans_basis[:, alpha] = np.ravel(vec * np.sqrt(M3)) |
| 111 | + |
| 112 | + # ----- 4. Combine bases and orthonormalize ----- |
| 113 | + U = np.hstack([trans_basis, rot_basis]) # shape (3N,6) |
| 114 | + Q, _ = np.linalg.qr(U) |
| 115 | + |
| 116 | + # ----- 5. Project X onto null space ----- |
| 117 | + X_proj = np.ravel(X) - Q @ (Q.T @ np.ravel(X)) |
| 118 | + return X_proj |
| 119 | + |
| 120 | + |
| 121 | + |
38 | 122 | def compute_com(R, M): |
39 | 123 | """ |
40 | 124 | Args: |
|
0 commit comments