Skip to content

Commit 699396d

Browse files
Merge pull request #452 from Quantum-Software-Development/FabianaCampanari-patch-1
Add files via upload
2 parents d93ba30 + 79ca322 commit 699396d

File tree

2 files changed

+144
-0
lines changed

2 files changed

+144
-0
lines changed
322 KB
Loading
Lines changed: 144 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,144 @@
1+
2+
# 📊 Linear Programming Model — Production Optimization
3+
4+
## ✅ Problem Statement
5+
6+
A company, after going through a production streamlining process, ended up with the availability of 3 productive resources: **R1**, **R2**, and **R3**.
7+
8+
A study on resource usage showed the possibility of producing two products: **P1** and **P2**. After evaluating costs and consulting the sales department, it was found that:
9+
10+
- **P1 yields a profit of 120 monetary units per unit**
11+
- **P2 yields a profit of 150 monetary units per unit**
12+
13+
The production department provided the following **resource usage** table:
14+
15+
| Product | R1/unit | R2/unit | R3/unit |
16+
|---------|---------|---------|---------|
17+
| **P1** | 2 | 3 | 5 |
18+
| **P2** | 4 | 0 | 3 |
19+
20+
And the **monthly resource availability**:
21+
22+
| Resource | Monthly Availability |
23+
|----------|----------------------|
24+
| **R1** | 100 |
25+
| **R2** | 90 |
26+
| **R3** | 120 |
27+
28+
---
29+
30+
## 🎯 Objective
31+
32+
Mathematically model the **Linear Programming (LP)** problem to **maximize profit** under resource constraints.
33+
34+
---
35+
36+
## 🧠 Step-by-Step Modeling
37+
38+
### 1. 🧮 Decision Variables
39+
40+
Let:
41+
42+
x₁ = quantity produced of product P1
43+
x₂ = quantity produced of product P2
44+
45+
Or in LaTeX (for use in documents):
46+
47+
```latex
48+
x_1 = \text{quantity produced of product P1} \\
49+
x_2 = \text{quantity produced of product P2}
50+
51+
52+
53+
54+
55+
2. 📈 Objective Function
56+
57+
Maximize total profit:
58+
59+
\text{Maximize } Z = 120x_1 + 150x_2
60+
61+
62+
63+
64+
65+
3. 📏 Resource Constraints
66+
67+
Each resource has limited availability:
68+
• R1 constraint:
69+
70+
2x_1 + 4x_2 \leq 100
71+
72+
• R2 constraint:
73+
74+
3x_1 \leq 90
75+
76+
• R3 constraint:
77+
78+
5x_1 + 3x_2 \leq 120
79+
80+
81+
82+
83+
84+
4. 🚫 Non-Negativity Constraints
85+
86+
We cannot produce a negative quantity of products:
87+
88+
x_1 \geq 0, \quad x_2 \geq 0
89+
90+
91+
92+
93+
94+
🧾 Complete Mathematical Model
95+
96+
\boxed{
97+
\begin{cases}
98+
\text{Maximize } Z = 120x_1 + 150x_2 \\
99+
2x_1 + 4x_2 \leq 100 \\
100+
3x_1 \leq 90 \\
101+
5x_1 + 3x_2 \leq 120 \\
102+
x_1 \geq 0, \quad x_2 \geq 0
103+
\end{cases}
104+
}
105+
106+
107+
108+
109+
110+
## 📌 Summary Tables
111+
112+
### 🔢 Profit per Product
113+
114+
| Product | Profit per Unit (u.m.) |
115+
|:--------|:----------------------:|
116+
| **P1** | 120 |
117+
| **P2** | 150 |
118+
119+
---
120+
121+
### 🧰 Resource Usage per Unit
122+
123+
| Product | R1/unit | R2/unit | R3/unit |
124+
|:--------|:-------:|:-------:|:-------:|
125+
| **P1** | 2 | 3 | 5 |
126+
| **P2** | 4 | 0 | 3 |
127+
128+
---
129+
130+
### 📦 Monthly Resource Availability
131+
132+
| Resource | Available Units |
133+
|:---------|:----------------:|
134+
| **R1** | 100 |
135+
| **R2** | 90 |
136+
| **R3** | 120 |
137+
138+
139+
140+
141+
🧠 Notes
142+
• This LP model can be solved using methods such as the Simplex Algorithm.
143+
• Can also be implemented in software such as Python (PuLP), MATLAB, or Excel Solver.
144+

0 commit comments

Comments
 (0)