@@ -38,24 +38,24 @@ Feel free to explore, contribute, and share your insights!
3838 ──────────────
3939 * Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
4040
41- ** Formula for Fourier Transform:**
41+ Formula for Fourier Transform:
4242
4343 $\huge \color{DeepSkyBlue} \hat{f}(k) = \int_ {-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$
4444
4545 <br >
4646
47- ** Formula for Inverse Fourier Transform:**
47+ Formula for Inverse Fourier Transform:
4848
4949 $f(x) = \int_ {-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
5050
5151 Where:
52- - $large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
53- - $large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.
54- - $large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency.
52+ - $large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
53+ - $large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.
54+ - $large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency.
5555
5656 ** Relevance in Quantum Mechanics and Computing:**
57- - ** Quantum Mechanics** : Converts wavefunctions between position and momentum spaces.
58- - ** Quantum Computing** : Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
57+ - ** Quantum Mechanics** : Converts wavefunctions between position and momentum spaces.
58+ - ** Quantum Computing** : Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
5959
6060
6161<br ><br >
0 commit comments