Skip to content

Commit 370dd30

Browse files
Merge pull request #330 from Quantum-Software-Development/FabianaCampanari-patch-1
Update README.md
2 parents 0f3e3ae + 6f1ac8a commit 370dd30

File tree

1 file changed

+6
-1
lines changed

1 file changed

+6
-1
lines changed

README.md

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,8 @@ Leonhard Euler, one of the most significant mathematicians in history, contribut
9898

9999
* **Euler's Formula:**
100100

101-
$\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
101+
$\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
102+
102103

103104
Where:
104105
- $\large \color{DeepSkyBlue} \( e \)$: Base of the natural logarithm.
@@ -119,6 +120,8 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i
119120

120121
$\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
121122

123+
<br>
124+
122125
Where:
123126
- $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution.
124127
- $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation.
@@ -144,6 +147,8 @@ Joseph Fourier’s development of Fourier analysis allowed quantum mechanics to
144147

145148
$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
146149

150+
<br>
151+
147152
[Where]():
148153
- $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
149154
- $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.

0 commit comments

Comments
 (0)