Skip to content

Commit 520d631

Browse files
Update README.md
Signed-off-by: Fabiana 🚀 Campanari <[email protected]>
1 parent 2c40aaf commit 520d631

File tree

1 file changed

+12
-20
lines changed

1 file changed

+12
-20
lines changed

README.md

Lines changed: 12 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -30,36 +30,28 @@ Feel free to explore, contribute, and share your insights!
3030

3131
<br><br>
3232

33-
## <p align="center"> Mathematical Foundations for [Quantum Mechanics and Quantum Computation]()
33+
## <p align="center"> [Predecessors of Quantum Mechanics](): Key Mathematicians and Their Contributions
3434

3535
<br>
3636

37-
1- [Joseph Fourier](*) **(1822)** <br>
38-
──────────────
39-
* Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
4037

41-
- Formula for Fourier Transform:
42-
43-
$\huge \color{DeepSkyBlue} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$
38+
1. **Leonhard Euler (1748)** <br>
39+
──────────────
4440

45-
<br>
41+
* Developed the [Euler's Formula](), which links exponential functions to trigonometric functions. It is fundamental in wave mechanics and quantum state representation.
42+
* **Euler's Formula:**
43+
$\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
4644

47-
- Formula for [Inverse]() Fourier Transform:
48-
49-
$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
45+
Where:
46+
- **\( e \)**: Base of the natural logarithm.
47+
- **\( \theta \)**: Phase angle.
48+
- **\( i \)**: Imaginary unit.
5049

51-
<br>
50+
Euler's formula is essential for describing quantum wavefunctions and visualizing oscillations in the complex plane.
5251

53-
[Where]():
54-
- $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
55-
- $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.
56-
- $\large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency.
52+
#
5753

58-
<br>
5954

60-
[**Relevance in Quantum Mechanics and Computing:**]()
61-
- **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.
62-
- **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
6355

6456

6557

0 commit comments

Comments
 (0)