@@ -50,7 +50,7 @@ A tribute to some of the brightest minds who have shaped the field of quantum co
5050
5151 <br >
5252
53- ## 5. Erwin Schrödinger (1926) 🐈
53+ 6 . Erwin Schrödinger (1926) 🐈
5454
5555![ Erwin Schrödinger] ( path/to/image/schrodinger.jpg )
5656
@@ -66,7 +66,7 @@ A tribute to some of the brightest minds who have shaped the field of quantum co
6666 <br >
6767
6868
69- 6 . ** Paul Dirac** (1928) ➕➖
69+ 7 . ** Paul Dirac** (1928) ➕➖
7070
7171 - ** Formula** :
7272
@@ -106,28 +106,28 @@ A tribute to some of the brightest minds who have shaped the field of quantum co
106106
107107 <br >
108108
109- 11 . ** John Bell** (1964) 🔗
109+ 12 . ** John Bell** (1964) 🔗
110110 - ** Formula** : \( |E(a, b) + E(a, b') + E(a, b) - E(a', b')| \leq 2 \)
111111 - ** Explanation** : Bell's inequality tests if correlations between entangled particles can be explained by local theories.
112112 - ** Contribution** : Fundamental for experiments that verified quantum entanglement and non-locality.
113113
114114 <br >
115115
116- 12 . ** Alexander Holevo** (1973) 🧩
116+ 13 . ** Alexander Holevo** (1973) 🧩
117117 - ** Formula** : \( I(X: Y ) \leq S(\rho) \)
118118 - ** Explanation** : The Holevo bound describes the maximum information extractable from a quantum system.
119119 - ** Contribution** : Essential for quantum information theory, with implications in cryptography and quantum data transmission.
120120
121121 <br >
122122
123- 13 . ** Peter Shor** (1994) 🔓
123+ 14 . ** Peter Shor** (1994) 🔓
124124 - ** Formula** : N/A
125125 - ** Explanation** : Shor's algorithm enables efficient factorization of large numbers, threatening the security of traditional cryptographic systems.
126126 - ** Contribution** : The first quantum algorithm to solve complex problems more efficiently than classical algorithms.
127127
128128 <br >
129129
130- 14 . ** Lov Grover** (1996) 🔍
130+ 15 . ** Lov Grover** (1996) 🔍
131131 - ** Formula** : N/A
132132 - ** Explanation** : Grover's algorithm improves search efficiency, reducing search time from \( O(N) \) to \( O(\sqrt{N}) \) .
133133 - ** Contribution** : Demonstrates how quantum computing can accelerate data search problems faster than classical computing.
0 commit comments