diff --git a/README.md b/README.md index fe06a72..f408b9d 100644 --- a/README.md +++ b/README.md @@ -50,7 +50,6 @@ Feel free to explore, contribute, and share your insights! - $\large \color{DeepSkyBlue} h$ is Planck's constant ($6.626 \times 10^{-34} \, \text{J·s}$). - $\large \color{DeepSkyBlue} f$ is the radiation frequency. - # 2. **Albert Einstein (1905)** @@ -63,8 +62,31 @@ Feel free to explore, contribute, and share your insights! - $\large \color{DeepSkyBlue} W$ is the work function (minimum energy required to remove an electron). - $\large \color{DeepSkyBlue} K$ is the kinetic energy of the ejected electron. +# + +3. **Niels Bohr (1913)** + * Bohr's atomic model with quantized energy levels. + + Formula for the energy levels of the electron in the hydrogen atom: + $\huge \color{DeepSkyBlue} E_n = -\frac{13.6 \, \text{eV}}{n^2}$ + + Where: + - $\large \color{DeepSkyBlue} E_n$ is the energy of level $n$. + - $\large \color{DeepSkyBlue} n$ is the principal quantum number. + + +# +4. **Erwin Schrödinger (1926)** + * Schrödinger's equation, the foundation of wave mechanics. + Time-dependent form of Schrödinger's equation: + $\huge \color{DeepSkyBlue} i\hbar \frac{\partial}{\partial t} \psi(r, t) = \hat{H} \psi(r, t)$ + + Where: + - $\large \color{DeepSkyBlue} \psi(r, t)$ is the wave function of the system. + - $\large \color{DeepSkyBlue} \hat{H}$ is the Hamiltonian operator. + - $\large \color{DeepSkyBlue} \hbar$ is the reduced Planck constant.