diff --git a/README.md b/README.md index e23a18d..35d7e05 100644 --- a/README.md +++ b/README.md @@ -30,36 +30,28 @@ Feel free to explore, contribute, and share your insights!

-##

Mathematical Foundations for [Quantum Mechanics and Quantum Computation]() +##

[Predecessors of Quantum Mechanics](): Key Mathematicians and Their Contributions
-1- [Joseph Fourier](*) **(1822)**
- ────────────── -* Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing. - - Formula for Fourier Transform: - - $\huge \color{DeepSkyBlue} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$ +1. **Leonhard Euler (1748)**
+────────────── -
+ * Developed the [Euler's Formula](), which links exponential functions to trigonometric functions. It is fundamental in wave mechanics and quantum state representation. + * **Euler's Formula:** + $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$ - - Formula for [Inverse]() Fourier Transform: - - $\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$ + Where: + - **\( e \)**: Base of the natural logarithm. + - **\( \theta \)**: Phase angle. + - **\( i \)**: Imaginary unit. -
+ Euler's formula is essential for describing quantum wavefunctions and visualizing oscillations in the complex plane. - [Where](): - - $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain. - - $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain. - - $\large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency. +# -
- [**Relevance in Quantum Mechanics and Computing:**]() - - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces. - - **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.