diff --git a/README.md b/README.md index 93ed50b..7add325 100644 --- a/README.md +++ b/README.md @@ -228,7 +228,6 @@ $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\i
[Where](): - - **$large \color{DeepSkyBlue} \( n \)$** : Summation index. This series converges extraordinarily rapidly, making it highly efficient for calculating $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to many decimal places. In 1985, William Gosper used this formula to compute $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to 17 million digits. @@ -269,6 +268,16 @@ Ramanujan's deep insights into infinite series and modular forms continue to inf $\huge \color{DeepSkyBlue} E = h \cdot f$ +
+ + Where: + - **\( E \)**: Energy of a photon. + - **\( h \)**: Planck's constant (\(6.626 \times 10^{-34} \, \text{J·s}\)). + - **\( f \)**: Frequency of the radiation. + + + +