diff --git a/README.md b/README.md
index 93ed50b..7add325 100644
--- a/README.md
+++ b/README.md
@@ -228,7 +228,6 @@ $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\i
[Where]():
-
- **$large \color{DeepSkyBlue} \( n \)$** : Summation index.
This series converges extraordinarily rapidly, making it highly efficient for calculating $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to many decimal places. In 1985, William Gosper used this formula to compute $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to 17 million digits.
@@ -269,6 +268,16 @@ Ramanujan's deep insights into infinite series and modular forms continue to inf
$\huge \color{DeepSkyBlue} E = h \cdot f$
+
+
+ Where:
+ - **\( E \)**: Energy of a photon.
+ - **\( h \)**: Planck's constant (\(6.626 \times 10^{-34} \, \text{J·s}\)).
+ - **\( f \)**: Frequency of the radiation.
+
+
+
+