From 907fa6b19740a10b74b993f5605dbeaabd0e2deb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= Date: Tue, 24 Dec 2024 19:33:50 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari --- README.md | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 722609b..499f759 100644 --- a/README.md +++ b/README.md @@ -85,6 +85,8 @@ $\huge \bf \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} \rightarrow \frac{x^{\fra $\huge \bf \int 2x dx\$ +
+ $\huge \bf \frac{x^{1+1}}{1+1} \rightarrow 2 \cdot \frac{x^2}{2} \rightarrow x^2$
@@ -93,15 +95,19 @@ $\huge \bf \frac{x^{1+1}}{1+1} \rightarrow 2 \cdot \frac{x^2}{2} \rightarrow x^2 $\huge \bf \int 1 dx$ -The indefinite integral of \(1\) with respect to \(x\) is given by: ☟ +
+ +[The indefinite integral of \(1\) with respect to \(x\) is given by](): ☟ $\huge \bf \int 1 \, dx \rightarrow x + k$ +
-

where \(k\) is the constant of integration. +[Where $\(k\)$ is the constant of integration]() $\huge \bf \ x + k$ +
[**Final Result:**]() ☟