You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/src/index.md
-20Lines changed: 0 additions & 20 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -201,23 +201,3 @@ not be fully documented yet. If you encounter any issues or have questions, plea
201
201
library's [issue tracker](https://github.com/QuantumKitHub/MPSKit.jl/issues) on the GitHub
202
202
repository and open a new issue.
203
203
204
-
## Publications using MPSKit
205
-
206
-
Below you can find a list of publications that have made use of MPSKit. If you have used
207
-
this package and wish to have your publication added to this list, please open a pull
208
-
request or an issue on the [GitHub repository](https://github.com/QuantumKitHub/MPSKit.jl/).
209
-
210
-
- R. Belyansky et al., *“High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED,”* 2023, doi: 10.48550/ARXIV.2307.02522.
211
-
- L. Devos, L. Vanderstraeten, and F. Verstraete, *“Haldane gap in the SU(3) [3 0 0] Heisenberg chain,”* Phys. Rev. B, vol. 106, no. 15, p. 155103, Oct. 2022, doi: 10.1103/PhysRevB.106.155103.
212
-
- J. C. Halimeh, M. V. Damme, T. V. Zache, D. Banerjee, and P. Hauke, *“Achieving the quantum field theory limit in far-from-equilibrium quantum link models,”* Quantum, vol. 6, p. 878, Dec. 2022, doi: 10.22331/q-2022-12-19-878.
213
-
- J. C. Halimeh, D. Trapin, M. Van Damme, and M. Heyl, *“Local measures of dynamical quantum phase transitions,”* Phys. Rev. B, vol. 104, no. 7, p. 075130, Aug. 2021, doi: 10.1103/PhysRevB.104.075130.
214
-
- M. Hauru, M. Van Damme, and J. Haegeman, *“Riemannian optimization of isometric tensor networks,”* SciPost Physics, vol. 10, no. 2, p. 040, Feb. 2021, doi: 10.21468/SciPostPhys.10.2.040.
215
-
- M. Van Damme, R. Vanhove, J. Haegeman, F. Verstraete, and L. Vanderstraeten, *“Efficient matrix product state methods for extracting spectral information on rings and cylinders,”* Phys. Rev. B, vol. 104, no. 11, p. 115142, Sep. 2021, doi: 10.1103/PhysRevB.104.115142.
216
-
- M. Van Damme, T. V. Zache, D. Banerjee, P. Hauke, and J. C. Halimeh, *“Dynamical quantum phase transitions in spin-$S$ $\text{U}(1)$ quantum link models,”* Phys. Rev. B, vol. 106, no. 24, p. 245110, Dec. 2022, doi: 10.1103/PhysRevB.106.245110.
217
-
- E. L. Weerda and M. Rizzi, *“Fractional quantum Hall states with variational Projected Entangled-Pair States: a study of the bosonic Harper-Hofstadter model,”* 2023, doi: 10.48550/ARXIV.2309.12811.
218
-
- C. Yu and J.-W. Lee, *“Closing of the Haldane gap in a spin-1 XXZ chain,”* J. Korean Phys. Soc., vol. 79, no. 9, pp. 841–845, Nov. 2021, doi: 10.1007/s40042-021-00283-z.
219
-
- Y. Zhang, A. Hulsch, H.-C. Zhang, W. Tang, L. Wang, and H.-H. Tu, *“Universal Scaling of Klein Bottle Entropy near Conformal Critical Points,”* Phys. Rev. Lett., vol. 130, no. 15, p. 151602, Apr. 2023, doi: 10.1103/PhysRevLett.130.151602.
220
-
- Gertian Roose, Laurens Vanderstraeten, Jutho Haegeman, and Nick Bultinck. Anomalous domain wall condensation in a modified ising chain. Phys. Rev. B, 99: 195132, May 2019. 10.1103/PhysRevB.99.195132.
221
-
https://doi.org/10.1103/PhysRevB.99.195132
222
-
- Roose, G., Bultinck, N., Vanderstraeten, L. et al. Lattice regularisation and entanglement structure of the Gross-Neveu model. J. High Energ. Phys. 2021, 207 (2021). https://doi.org/10.1007/JHEP07(2021)207
223
-
- Roose, G., Haegeman, J., Van Acoleyen, K. et al. The chiral Gross-Neveu model on the lattice via a Landau-forbidden phase transition. J. High Energ. Phys. 2022, 19 (2022). https://doi.org/10.1007/JHEP06(2022)019
The dominant eigenvector is of course only an approximation. The finite bond dimension enforces a finite correlation length, which effectively introduces a length scale in the system. This can be exploited to formulate a [scaling hypothesis](https://arxiv.org/pdf/0812.2903.pdf), which in turn allows to extract the central charge.
54
+
The dominant eigenvector is of course only an approximation. The finite bond dimension enforces a finite correlation length, which effectively introduces a length scale in the system. This can be exploited to formulate a [pollmann2009](@cite), which in turn allows to extract the central charge.
55
55
56
56
First we need to know the entropy and correlation length at a bunch of different bond dimensions. Our approach will be to re-use the previous approximated dominant eigenvector, and then expanding its bond dimension and re-running VUMPS.
57
57
According to the scaling hypothesis we should have ``S \propto \frac{c}{6} log(ξ)``. Therefore we should find ``c`` using
Copy file name to clipboardExpand all lines: src/algorithms/groundstate/vumps.jl
+6-2Lines changed: 6 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -1,12 +1,16 @@
1
1
"""
2
2
$(TYPEDEF)
3
3
4
-
Variational optimization algorithm for uniform matrix product states, as introduced in
5
-
https://arxiv.org/abs/1701.07035.
4
+
Variational optimization algorithm for uniform matrix product states, based on the combination of DMRG with matrix product state tangent space concepts.
6
5
7
6
## Fields
8
7
9
8
$(TYPEDFIELDS)
9
+
10
+
## References
11
+
12
+
* [Zauner-Stauber et al. Phys. Rev. B 97 (2018)](@cite zauner-stauber2018)
0 commit comments