|
752 | 752 | end |
753 | 753 |
|
754 | 754 | @testset "periodic boundary conditions" begin |
755 | | - # len = 10 |
756 | | -
|
757 | | - # #impose periodic boundary conditions on the hamiltonian (circle size 10) |
758 | | - # H = transverse_field_ising(;) |
759 | | - # H = periodic_boundary_conditions(H, len) |
760 | | -
|
761 | | - # ψ = FiniteMPS(len, ℂ^2, ℂ^10) |
762 | | -
|
763 | | - # gs, envs = find_groundstate(ψ, H, DMRG(; verbosity=0)) |
764 | | -
|
765 | | - # #translation mpo: |
766 | | - # @tensor bulk[-1 -2; -3 -4] := isomorphism(ℂ^2, ℂ^2)[-2, -4] * |
767 | | - # isomorphism(ℂ^2, ℂ^2)[-1, -3] |
768 | | - # translation = periodic_boundary_conditions(InfiniteMPO(PeriodicVector([bulk])), len) |
769 | | -
|
770 | | - # #the groundstate should be translation invariant: |
771 | | - # ut = ones(ℂ^1) |
772 | | - # @tensor leftstart[-1 -2; -3] := l_LL(gs)[-1, -3] * conj(ut[-2]) |
773 | | - # T = TransferMatrix([gs.AC[1]; gs.AR[2:end]], translation[:], [gs.AC[1]; gs.AR[2:end]]) |
774 | | - # v = leftstart * T |
775 | | -
|
776 | | - # expval = @tensor v[1, 2, 3] * r_RR(gs)[3, 1] * ut[2] |
777 | | -
|
778 | | - # @test expval ≈ 1 atol = 1e-5 |
779 | | -
|
780 | | - # energies, values = exact_diagonalization(H; which=:SR) |
781 | | - # @test energies[1] ≈ expectation_value(gs, H) atol = 1e-5 |
782 | | -
|
783 | 755 | Hs = [transverse_field_ising(), heisenberg_XXX(), classical_ising(), sixvertex()] |
784 | 756 | for N in 2:6 |
785 | 757 | for H in Hs |
|
0 commit comments