188188
189189 # test using XXZ model, Δ > 1 is gapped
190190 spin = 1
191- local_operators = [S_xx (; spin), S_yy (; spin), 0 .7 * S_zz (; spin)]
191+ local_operators = [S_xx (; spin), S_yy (; spin), 1 .7 * S_zz (; spin)]
192192 Pspace = space (local_operators[1 ], 1 )
193193 lattice = fill (Pspace, L)
194194
@@ -205,23 +205,24 @@ end
205205 @testset " DMRG" begin
206206 # test logging passes
207207 ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
208- DMRG (; tol, verbosity= 5 , maxiter= 1 ))
208+ DMRG (; tol, verbosity= verbosity_full , maxiter= 1 ))
209209
210210 # compare states
211- alg = DMRG (; tol, verbosity= 1 )
212- ψ_lazy , envs, δ = find_groundstate (ψ₀ , H_lazy, alg)
211+ alg = DMRG (; tol, verbosity= verbosity_conv )
212+ ψ , envs, δ = find_groundstate (ψ, H_lazy, alg)
213213
214- @test abs (dot (ψ₀, ψ_lazy )) ≈ 1 atol = atol
214+ @test abs (dot (ψ₀, ψ )) ≈ 1 atol = atol
215215 end
216216
217217 @testset " DMRG2" begin
218218 # test logging passes
219219 trscheme = truncdim (floor (Int, D * 1.5 ))
220220 ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
221- DMRG2 (; tol, verbosity= 5 , maxiter= 1 , trscheme))
221+ DMRG2 (; tol, verbosity= verbosity_full, maxiter= 1 ,
222+ trscheme))
222223
223224 # compare states
224- alg = DMRG2 (; tol, verbosity= 1 , trscheme)
225+ alg = DMRG2 (; tol, verbosity= verbosity_conv , trscheme)
225226 ψ, = find_groundstate (ψ₀, H, alg)
226227 ψ_lazy, envs, δ = find_groundstate (ψ₀, H_lazy, alg)
227228
@@ -231,10 +232,11 @@ end
231232 @testset " GradientGrassmann" begin
232233 # test logging passes
233234 ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
234- GradientGrassmann (; tol, verbosity= 5 , maxiter= 2 ))
235+ GradientGrassmann (; tol, verbosity= verbosity_full,
236+ maxiter= 2 ))
235237
236238 # compare states
237- alg = GradientGrassmann (; tol, verbosity= 1 )
239+ alg = GradientGrassmann (; tol, verbosity= verbosity_conv )
238240 ψ, = find_groundstate (ψ₀, H, alg)
239241 ψ_lazy, envs, δ = find_groundstate (ψ₀, H_lazy, alg)
240242
249251
250252 # test using XXZ model, Δ > 1 is gapped
251253 spin = 1
252- local_operators = [S_xx (; spin), S_yy (; spin), S_zz (; spin)]
254+ local_operators = [S_xx (; spin), S_yy (; spin), 1.7 * S_zz (; spin)]
253255 Pspace = space (local_operators[1 ], 1 )
254256 lattice = PeriodicVector ([Pspace])
255257 mpo_hamiltonians = map (local_operators) do O
@@ -264,24 +266,26 @@ end
264266
265267 @testset " VUMPS" begin
266268 # test logging passes
267- ψ, envs, δ = find_groundstate (ψ₀, H_lazy, VUMPS (; tol, verbosity= 5 , maxiter= 2 ))
269+ ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
270+ VUMPS (; tol, verbosity= verbosity_full, maxiter= 2 ))
268271
269272 # compare states
270- alg = VUMPS (; tol, verbosity= 2 )
271- ψ_lazy , envs, δ = find_groundstate (ψ₀ , H_lazy, alg)
273+ alg = VUMPS (; tol, verbosity= verbosity_conv )
274+ ψ , envs, δ = find_groundstate (ψ, H_lazy, alg)
272275
273- @test abs (dot (ψ₀, ψ_lazy )) ≈ 1 atol = atol
276+ @test abs (dot (ψ₀, ψ )) ≈ 1 atol = atol
274277 end
275278
276279 @testset " IDMRG1" begin
277280 # test logging passes
278- ψ, envs, δ = find_groundstate (ψ₀, H_lazy, IDMRG1 (; tol, verbosity= 5 , maxiter= 2 ))
281+ ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
282+ IDMRG1 (; tol, verbosity= verbosity_full, maxiter= 2 ))
279283
280284 # compare states
281- alg = IDMRG1 (; tol, verbosity= 2 )
282- ψ_lazy , envs, δ = find_groundstate (ψ₀ , H_lazy, alg)
285+ alg = IDMRG1 (; tol, verbosity= verbosity_conv )
286+ ψ , envs, δ = find_groundstate (ψ, H_lazy, alg)
283287
284- @test abs (dot (ψ₀, ψ_lazy )) ≈ 1 atol = atol
288+ @test abs (dot (ψ₀, ψ )) ≈ 1 atol = atol
285289 end
286290
287291 @testset " IDMRG2" begin
@@ -292,26 +296,27 @@ end
292296 trscheme = truncdim (floor (Int, D * 1.5 ))
293297 # test logging passes
294298 ψ, envs, δ = find_groundstate (ψ₀′, H_lazy′,
295- IDMRG2 (; tol, verbosity= 5 , maxiter= 2 , trscheme))
299+ IDMRG2 (; tol, verbosity= verbosity_full, maxiter= 2 ,
300+ trscheme))
296301
297302 # compare states
298- alg = IDMRG2 (; tol, verbosity= 2 , trscheme)
299- ψ_lazy , envs, δ = find_groundstate (ψ₀′ , H_lazy′, alg)
303+ alg = IDMRG2 (; tol, verbosity= verbosity_conv , trscheme)
304+ ψ , envs, δ = find_groundstate (ψ, H_lazy′, alg)
300305
301- @test abs (dot (ψ₀′, ψ_lazy )) ≈ 1 atol = atol
306+ @test abs (dot (ψ₀′, ψ )) ≈ 1 atol = atol
302307 end
303308
304309 @testset " GradientGrassmann" begin
305310 # test logging passes
306311 ψ, envs, δ = find_groundstate (ψ₀, H_lazy,
307- GradientGrassmann (; tol, verbosity= 5 , maxiter= 2 ))
312+ GradientGrassmann (; tol, verbosity= verbosity_full,
313+ maxiter= 2 ))
308314
309315 # compare states
310- alg = GradientGrassmann (; tol, verbosity= 1 )
311- ψ_lazy, envs, δ = find_groundstate (ψ₀, H_lazy, alg)
312- ψ, = find_groundstate (ψ₀, H, alg)
316+ alg = GradientGrassmann (; tol, verbosity= verbosity_conv)
317+ ψ, envs, δ = find_groundstate (ψ₀, H_lazy, alg)
313318
314- @test abs (dot (ψ₀, ψ_lazy )) ≈ 1 atol = atol
319+ @test abs (dot (ψ₀, ψ )) ≈ 1 atol = atol
315320 end
316321end
317322
408413
409414@testset " leading_boundary" verbose = true begin
410415 tol = 1e-4
411- verbosity = 0
416+ verbosity = verbosity_conv
412417 algs = [VUMPS (; tol, verbosity), VOMPS (; tol, verbosity),
413- GradientGrassmann (; verbosity)]
418+ GradientGrassmann (; tol, verbosity)]
414419 mpo = force_planar (classical_ising ())
415420
416421 ψ₀ = InfiniteMPS ([ℙ^ 2 ], [ℙ^ 10 ])
@@ -428,22 +433,25 @@ end
428433 @testset " infinite (ham)" begin
429434 H = repeat (force_planar (heisenberg_XXX ()), 2 )
430435 ψ = InfiniteMPS ([ℙ^ 3 , ℙ^ 3 ], [ℙ^ 48 , ℙ^ 48 ])
431- ψ, envs, _ = find_groundstate (ψ, H; maxiter= 400 , verbosity= 0 , tol= 1e-11 )
436+ ψ, envs, _ = find_groundstate (ψ, H; maxiter= 400 , verbosity= verbosity_conv,
437+ tol= 1e-10 )
432438 energies, ϕs = excitations (H, QuasiparticleAnsatz (), Float64 (pi ), ψ, envs)
433439 @test energies[1 ] ≈ 0.41047925 atol = 1e-4
434440 @test variance (ϕs[1 ], H) < 1e-8
435441 end
436442 @testset " infinite (mpo)" begin
437443 H = repeat (sixvertex (), 2 )
438444 ψ = InfiniteMPS ([ℂ^ 2 , ℂ^ 2 ], [ℂ^ 10 , ℂ^ 10 ])
439- ψ, envs, _ = leading_boundary (ψ, H, VUMPS (; maxiter= 400 , verbosity= 0 ))
445+ ψ, envs, _ = leading_boundary (ψ, H,
446+ VUMPS (; maxiter= 400 , verbosity= verbosity_conv,
447+ tol= 1e-10 ))
440448 energies, ϕs = excitations (H, QuasiparticleAnsatz (), [0.0 , Float64 (pi / 2 )], ψ,
441449 envs; verbosity= 0 )
442450 @test abs (energies[1 ]) > abs (energies[2 ]) # has a minimum at pi/2
443451 end
444452
445453 @testset " finite" begin
446- verbosity = 0
454+ verbosity = verbosity_conv
447455 H_inf = force_planar (transverse_field_ising ())
448456 ψ_inf = InfiniteMPS ([ℙ^ 2 ], [ℙ^ 10 ])
449457 ψ_inf, envs, _ = find_groundstate (ψ_inf, H_inf; maxiter= 400 , verbosity, tol= 1e-9 )
0 commit comments