|
| 1 | +using JSON |
| 2 | +using DataFrames |
| 3 | +using CairoMakie |
| 4 | +using Statistics |
| 5 | + |
| 6 | +# Loading in the data |
| 7 | +# ------------------- |
| 8 | +resultdir = joinpath(@__DIR__, "results") |
| 9 | +resultfile(i) = "results_MPSKit@bench$i.json" |
| 10 | + |
| 11 | +df_contract = let df = DataFrame( |
| 12 | + :version => Int[], :model => String[], :symmetry => String[], |
| 13 | + :D => Int[], :V => Int[], :memory => Int[], :allocs => Int[], :times => Vector{Int}[] |
| 14 | + ) |
| 15 | + |
| 16 | + for version in 0:3 |
| 17 | + result = JSON.parsefile(joinpath(resultdir, resultfile(version))) |
| 18 | + for (model, model_res) in result.data.derivatives.data.AC2_contraction.data |
| 19 | + for (symmetry, sym_res) in model_res.data |
| 20 | + for (DV, bench) in sym_res.data |
| 21 | + D, V = eval(Meta.parse(DV))::Tuple{Int, Int} |
| 22 | + |
| 23 | + push!( |
| 24 | + df, |
| 25 | + (version, model, symmetry, D, V, bench.memory, bench.allocs, collect(Int, bench.times)) |
| 26 | + ) |
| 27 | + end |
| 28 | + end |
| 29 | + end |
| 30 | + end |
| 31 | + df |
| 32 | +end |
| 33 | +df_prep = let df = DataFrame( |
| 34 | + :version => Int[], :model => String[], :symmetry => String[], |
| 35 | + :D => Int[], :V => Int[], :memory => Int[], :allocs => Int[], :times => Vector{Int}[] |
| 36 | + ) |
| 37 | + |
| 38 | + for version in 0:3 |
| 39 | + result = JSON.parsefile(joinpath(resultdir, resultfile(version))) |
| 40 | + for (model, model_res) in result.data.derivatives.data.AC2_preparation.data |
| 41 | + for (symmetry, sym_res) in model_res.data |
| 42 | + for (DV, bench) in sym_res.data |
| 43 | + D, V = eval(Meta.parse(DV))::Tuple{Int, Int} |
| 44 | + |
| 45 | + push!( |
| 46 | + df, |
| 47 | + (version, model, symmetry, D, V, bench.memory, bench.allocs, collect(Int, bench.times)) |
| 48 | + ) |
| 49 | + end |
| 50 | + end |
| 51 | + end |
| 52 | + end |
| 53 | + df |
| 54 | +end |
| 55 | + |
| 56 | +# Plotting the results |
| 57 | +# -------------------- |
| 58 | +fontsize = 20 |
| 59 | +estimator = median |
| 60 | + |
| 61 | +f_times = let f = Figure(; size = (1400, 1400)) |
| 62 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 63 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 64 | + |
| 65 | + |
| 66 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 67 | + for row in eachindex(models), col in eachindex(symmetries) |
| 68 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 69 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "Δt (μs)", yscale = log10) |
| 70 | + @assert !isnothing(df_data) |
| 71 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 72 | + Ds = v[!, :D] |
| 73 | + times = estimator.(v[!, :times]) ./ 1.0e3 |
| 74 | + I = sortperm(Ds) |
| 75 | + scatterlines!(ax, Ds[I], times[I]; label = "v$(k.version)") |
| 76 | + end |
| 77 | + axislegend(ax, position = :lt) |
| 78 | + end |
| 79 | + |
| 80 | + Label(f[0, 0], "times"; fontsize) |
| 81 | + for (row, model) in enumerate(models) |
| 82 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 83 | + end |
| 84 | + for (col, symmetry) in enumerate(symmetries) |
| 85 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 86 | + end |
| 87 | + |
| 88 | + f |
| 89 | +end |
| 90 | +save(joinpath(resultdir, "bench_times.png"), f_times) |
| 91 | + |
| 92 | +f_times_relative = let f = Figure(; size = (1400, 1400)) |
| 93 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 94 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 95 | + |
| 96 | + |
| 97 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 98 | + for row in eachindex(models), col in eachindex(symmetries) |
| 99 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 100 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "Δt / Δt₀") |
| 101 | + hlines!([1], color = :red) |
| 102 | + @assert !isnothing(df_data) |
| 103 | + |
| 104 | + df_v = groupby(df_data, :version) |
| 105 | + |
| 106 | + v = get(df_v, (; version = 0), nothing) |
| 107 | + Ds = v[!, :D] |
| 108 | + times = estimator.(v[!, :times]) |
| 109 | + I = sortperm(Ds) |
| 110 | + times₀ = times[I] |
| 111 | + |
| 112 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 113 | + k.version == 0 && continue |
| 114 | + Ds = v[!, :D] |
| 115 | + I = sortperm(Ds) |
| 116 | + times = estimator.(v[!, :times])[I] |
| 117 | + scatterlines!(ax, Ds[I], times ./ times₀; label = "v$(k.version)") |
| 118 | + end |
| 119 | + axislegend(ax, position = :lt) |
| 120 | + end |
| 121 | + |
| 122 | + Label(f[0, 0], "times"; fontsize) |
| 123 | + for (row, model) in enumerate(models) |
| 124 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 125 | + end |
| 126 | + for (col, symmetry) in enumerate(symmetries) |
| 127 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 128 | + end |
| 129 | + |
| 130 | + f |
| 131 | +end |
| 132 | +save(joinpath(resultdir, "bench_times_relative.png"), f_times_relative) |
| 133 | + |
| 134 | +f_allocs = let f = Figure(; size = (1400, 1400)) |
| 135 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 136 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 137 | + |
| 138 | + |
| 139 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 140 | + for row in eachindex(models), col in eachindex(symmetries) |
| 141 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 142 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "allocs", yscale = log10) |
| 143 | + @assert !isnothing(df_data) |
| 144 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 145 | + Ds = v[!, :D] |
| 146 | + allocs = estimator.(v[!, :allocs]) |
| 147 | + I = sortperm(Ds) |
| 148 | + scatterlines!(ax, Ds[I], allocs[I]; label = "v$(k.version)") |
| 149 | + end |
| 150 | + axislegend(ax, position = :lt) |
| 151 | + end |
| 152 | + |
| 153 | + Label(f[0, 0], "allocs"; fontsize) |
| 154 | + for (row, model) in enumerate(models) |
| 155 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 156 | + end |
| 157 | + for (col, symmetry) in enumerate(symmetries) |
| 158 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 159 | + end |
| 160 | + |
| 161 | + f |
| 162 | +end |
| 163 | +save(joinpath(resultdir, "bench_allocs.png"), f_allocs) |
| 164 | + |
| 165 | +f_memory = let f = Figure(; size = (1400, 1400)) |
| 166 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 167 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 168 | + |
| 169 | + |
| 170 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 171 | + for row in eachindex(models), col in eachindex(symmetries) |
| 172 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 173 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "memory (KiB)", yscale = log10) |
| 174 | + @assert !isnothing(df_data) |
| 175 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 176 | + Ds = v[!, :D] |
| 177 | + memory = estimator.(v[!, :memory]) ./ (2^10) |
| 178 | + I = sortperm(Ds) |
| 179 | + scatterlines!(ax, Ds[I], memory[I]; label = "v$(k.version)") |
| 180 | + end |
| 181 | + axislegend(ax, position = :lt) |
| 182 | + end |
| 183 | + |
| 184 | + Label(f[0, 0], "memory"; fontsize) |
| 185 | + for (row, model) in enumerate(models) |
| 186 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 187 | + end |
| 188 | + for (col, symmetry) in enumerate(symmetries) |
| 189 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 190 | + end |
| 191 | + |
| 192 | + f |
| 193 | +end |
| 194 | +save(joinpath(resultdir, "bench_memory.png"), f_allocs) |
| 195 | + |
| 196 | +f_memory_relative = let f = Figure(; size = (1400, 1400)) |
| 197 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 198 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 199 | + |
| 200 | + |
| 201 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 202 | + for row in eachindex(models), col in eachindex(symmetries) |
| 203 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 204 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "memory / memory₀") |
| 205 | + hlines!([1], color = :red) |
| 206 | + @assert !isnothing(df_data) |
| 207 | + |
| 208 | + df_v = groupby(df_data, :version) |
| 209 | + |
| 210 | + v = get(df_v, (; version = 0), nothing) |
| 211 | + Ds = v[!, :D] |
| 212 | + times = estimator.(v[!, :memory]) |
| 213 | + I = sortperm(Ds) |
| 214 | + times₀ = times[I] |
| 215 | + |
| 216 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 217 | + k.version == 0 && continue |
| 218 | + Ds = v[!, :D] |
| 219 | + I = sortperm(Ds) |
| 220 | + times = estimator.(v[!, :memory])[I] |
| 221 | + scatterlines!(ax, Ds[I], times ./ times₀; label = "v$(k.version)") |
| 222 | + end |
| 223 | + axislegend(ax, position = :lt) |
| 224 | + end |
| 225 | + |
| 226 | + Label(f[0, 0], "memory (relative)"; fontsize) |
| 227 | + for (row, model) in enumerate(models) |
| 228 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 229 | + end |
| 230 | + for (col, symmetry) in enumerate(symmetries) |
| 231 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 232 | + end |
| 233 | + |
| 234 | + f |
| 235 | +end |
| 236 | +save(joinpath(resultdir, "bench_memory_relative.png"), f_memory_relative) |
| 237 | + |
| 238 | + |
| 239 | +# Including preparation times |
| 240 | +# --------------------------- |
| 241 | +for n_applications in [3, 10, 30] |
| 242 | + f_times_relative = let f = Figure(; size = (1400, 1400)) |
| 243 | + models = ["heisenberg_nn", "heisenberg_nnn", "heisenberg_cylinder", "heisenberg_coulomb"] |
| 244 | + symmetries = ["Trivial", "Irrep[U₁]", "Irrep[SU₂]"] |
| 245 | + |
| 246 | + |
| 247 | + df_model = groupby(df_contract, [:model, :symmetry]) |
| 248 | + dfp_model = groupby(df_prep, [:model, :symmetry]) |
| 249 | + for row in eachindex(models), col in eachindex(symmetries) |
| 250 | + df_data = get(df_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 251 | + dfp_data = get(dfp_model, (; model = models[row], symmetry = symmetries[col]), nothing) |
| 252 | + ax = Axis(f[row, col], xscale = log10, xlabel = "D", ylabel = "Δt / Δt₀") |
| 253 | + hlines!([1], color = :red) |
| 254 | + @assert !isnothing(df_data) && !isnothing(dfp_data) |
| 255 | + |
| 256 | + df_v = groupby(df_data, :version) |
| 257 | + dfp_v = groupby(dfp_data, :version) |
| 258 | + |
| 259 | + v = get(df_v, (; version = 0), nothing) |
| 260 | + Ds = v[!, :D] |
| 261 | + times = estimator.(v[!, :times]) |
| 262 | + I = sortperm(Ds) |
| 263 | + times₀ = n_applications .* times[I] |
| 264 | + |
| 265 | + vp = get(dfp_v, (; version = 0), nothing) |
| 266 | + Ds = vp[!, :D] |
| 267 | + times = estimator.(vp[!, :times]) |
| 268 | + I = sortperm(Ds) |
| 269 | + times₀ .+= times[I] |
| 270 | + |
| 271 | + df_data_v = groupby(dfp_data, :version) |
| 272 | + for (k, v) in pairs(groupby(df_data, :version)) |
| 273 | + k.version == 0 && continue |
| 274 | + Ds = v[!, :D] |
| 275 | + I = sortperm(Ds) |
| 276 | + times = n_applications .* estimator.(v[!, :times])[I] |
| 277 | + |
| 278 | + vp = get(df_data_v, (; k.version), nothing) |
| 279 | + @assert !isnothing(vp) |
| 280 | + Ds = vp[!, :D] |
| 281 | + I = sortperm(Ds) |
| 282 | + times .+= estimator.(vp[!, :times][I]) |
| 283 | + |
| 284 | + scatterlines!(ax, Ds[I], times ./ times₀; label = "v$(k.version)") |
| 285 | + end |
| 286 | + axislegend(ax, position = :lt) |
| 287 | + end |
| 288 | + |
| 289 | + Label(f[0, 0], "times"; fontsize) |
| 290 | + for (row, model) in enumerate(models) |
| 291 | + Label(f[row, 0], model; rotation = pi / 2, fontsize, tellheight = false, tellwidth = false) |
| 292 | + end |
| 293 | + for (col, symmetry) in enumerate(symmetries) |
| 294 | + Label(f[0, col], symmetry; fontsize, tellheight = false, tellwidth = false) |
| 295 | + end |
| 296 | + |
| 297 | + f |
| 298 | + end |
| 299 | + save(joinpath(resultdir, "bench_prep_times_relative_n=$n_applications.png"), f_times_relative) |
| 300 | +end |
0 commit comments