11function left_canonicalize! (
22 H:: FiniteMPOHamiltonian , i:: Int ;
3- alg = Defaults. alg_qr (), trscheme :: TruncationStrategy = notrunc ()
3+ alg:: MatrixAlgebraKit.AbstractAlgorithm = Defaults. alg_qr ()
44 )
55 1 ≤ i < length (H) || throw (ArgumentError (" Bounds error in canonicalize" ))
66
@@ -19,7 +19,7 @@ function left_canonicalize!(
1919 # QR of second column
2020 if size (W, 1 ) == 1
2121 tmp = transpose (C′, ((2 , 1 ), (3 ,)))
22- Q, R = left_orth! (tmp; alg, trunc = trscheme )
22+ Q, R = left_orth! (tmp; alg)
2323
2424 if dim (R) == 0 # fully truncated
2525 V = oneunit (S) ⊞ oneunit (S)
@@ -35,7 +35,7 @@ function left_canonicalize!(
3535 H[i] = JordanMPOTensor (codomain (W) ← physicalspace (W) ⊗ V, Q1, W. B, Q2, W. D)
3636 else
3737 tmp = transpose (cat (insertleftunit (C′, 1 ), W. A; dims = 1 ), ((3 , 1 , 2 ), (4 ,)))
38- Q, R = left_orth! (tmp; alg, trunc = trscheme )
38+ Q, R = left_orth! (tmp; alg)
3939
4040 if dim (R) == 0 # fully truncated
4141 V = oneunit (S) ⊞ oneunit (S)
8686
8787function right_canonicalize! (
8888 H:: FiniteMPOHamiltonian , i:: Int ;
89- alg = Defaults. alg_lq (), trscheme :: TruncationStrategy = notrunc ()
89+ alg:: MatrixAlgebraKit.AbstractAlgorithm = Defaults. alg_lq ()
9090 )
9191 1 < i ≤ length (H) || throw (ArgumentError (" Bounds error in canonicalize" ))
9292
@@ -105,7 +105,7 @@ function right_canonicalize!(
105105 # LQ of second row
106106 if size (W, 4 ) == 1
107107 tmp = transpose (B′, ((1 ,), (3 , 2 )))
108- R, Q = right_orth! (tmp; alg, trunc = trscheme )
108+ R, Q = right_orth! (tmp; alg)
109109
110110 if dim (R) == 0
111111 V = oneunit (S) ⊞ oneunit (S)
@@ -121,7 +121,7 @@ function right_canonicalize!(
121121 H[i] = JordanMPOTensor (V ⊗ physicalspace (W) ← domain (W), Q1, Q2, W. C, W. D)
122122 else
123123 tmp = transpose (cat (insertleftunit (B′, 4 ), W. A; dims = 4 ), ((1 ,), (3 , 4 , 2 )))
124- R, Q = right_orth! (tmp; alg, trunc = trscheme )
124+ R, Q = right_orth! (tmp; alg)
125125 if dim (R) == 0
126126 V = oneunit (S) ⊞ oneunit (S)
127127 Q1 = typeof (W. A)(undef, SumSpace {S} () ⊗ physicalspace (W) ← physicalspace (W) ⊗ SumSpace {S} ())
0 commit comments