|
| 1 | +using MatrixAlgebraKit |
| 2 | +using Test |
| 3 | +using TestExtras |
| 4 | +using StableRNGs |
| 5 | +using LinearAlgebra: LinearAlgebra, I, mul!, diagm, norm |
| 6 | +using MatrixAlgebraKit: GPU_SVDAlgorithm, check_input, copy_input, default_svd_algorithm, |
| 7 | + initialize_output, AbstractAlgorithm |
| 8 | +using AMDGPU |
| 9 | + |
| 10 | +# testing non-AbstractArray codepaths: |
| 11 | +include(joinpath("..", "linearmap.jl")) |
| 12 | + |
| 13 | +@testset "left_orth and left_null for T = $T" for T in (Float32, Float64, ComplexF32, ComplexF64) |
| 14 | + rng = StableRNG(123) |
| 15 | + m = 54 |
| 16 | + @testset for n in (37, m, 63) |
| 17 | + minmn = min(m, n) |
| 18 | + A = ROCArray(randn(rng, T, m, n)) |
| 19 | + V, C = @constinferred left_orth(A) |
| 20 | + N = @constinferred left_null(A) |
| 21 | + @test V isa ROCMatrix{T} && size(V) == (m, minmn) |
| 22 | + @test C isa ROCMatrix{T} && size(C) == (minmn, n) |
| 23 | + @test N isa ROCMatrix{T} && size(N) == (m, m - minmn) |
| 24 | + @test V * C ≈ A |
| 25 | + @test isisometric(V) |
| 26 | + @test norm(A' * N) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 27 | + @test isisometric(N) |
| 28 | + hV = collect(V) |
| 29 | + hN = collect(N) |
| 30 | + @test hV * hV' + hN * hN' ≈ I |
| 31 | + |
| 32 | + M = LinearMap(A) |
| 33 | + VM, CM = @constinferred left_orth(M; kind = :svd) |
| 34 | + @test parent(VM) * parent(CM) ≈ A |
| 35 | + |
| 36 | + if m > n |
| 37 | + nullity = 5 |
| 38 | + V, C = @constinferred left_orth(A) |
| 39 | + AMDGPU.@allowscalar begin |
| 40 | + N = @constinferred left_null(A; trunc = (; maxnullity = nullity)) |
| 41 | + end |
| 42 | + @test V isa ROCMatrix{T} && size(V) == (m, minmn) |
| 43 | + @test C isa ROCMatrix{T} && size(C) == (minmn, n) |
| 44 | + @test N isa ROCMatrix{T} && size(N) == (m, nullity) |
| 45 | + @test V * C ≈ A |
| 46 | + @test isisometric(V) |
| 47 | + @test LinearAlgebra.norm(A' * N) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 48 | + @test isisometric(N) |
| 49 | + end |
| 50 | + |
| 51 | + for alg_qr in ((; positive = true), (; positive = false), ROCSOLVER_HouseholderQR()) |
| 52 | + V, C = @constinferred left_orth(A; alg_qr) |
| 53 | + N = @constinferred left_null(A; alg_qr) |
| 54 | + @test V isa ROCMatrix{T} && size(V) == (m, minmn) |
| 55 | + @test C isa ROCMatrix{T} && size(C) == (minmn, n) |
| 56 | + @test N isa ROCMatrix{T} && size(N) == (m, m - minmn) |
| 57 | + @test V * C ≈ A |
| 58 | + @test isisometric(V) |
| 59 | + @test norm(A' * N) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 60 | + @test isisometric(N) |
| 61 | + hV = collect(V) |
| 62 | + hN = collect(N) |
| 63 | + @test hV * hV' + hN * hN' ≈ I |
| 64 | + end |
| 65 | + |
| 66 | + Ac = similar(A) |
| 67 | + V2, C2 = @constinferred left_orth!(copy!(Ac, A), (V, C)) |
| 68 | + N2 = @constinferred left_null!(copy!(Ac, A), N) |
| 69 | + @test V2 === V |
| 70 | + @test C2 === C |
| 71 | + @test N2 === N |
| 72 | + @test V2 * C2 ≈ A |
| 73 | + @test isisometric(V2) |
| 74 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 75 | + @test isisometric(N2) |
| 76 | + hV2 = collect(V2) |
| 77 | + hN2 = collect(N2) |
| 78 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 79 | + |
| 80 | + atol = eps(real(T)) |
| 81 | + V2, C2 = @constinferred left_orth!(copy!(Ac, A), (V, C); trunc = (; atol = atol)) |
| 82 | + AMDGPU.@allowscalar begin |
| 83 | + N2 = @constinferred left_null!(copy!(Ac, A), N; trunc = (; atol = atol)) |
| 84 | + end |
| 85 | + @test V2 !== V |
| 86 | + @test C2 !== C |
| 87 | + @test N2 !== C |
| 88 | + @test V2 * C2 ≈ A |
| 89 | + @test isisometric(V2) |
| 90 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 91 | + @test isisometric(N2) |
| 92 | + hV2 = collect(V2) |
| 93 | + hN2 = collect(N2) |
| 94 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 95 | + |
| 96 | + rtol = eps(real(T)) |
| 97 | + for (trunc_orth, trunc_null) in ( |
| 98 | + ((; rtol = rtol), (; rtol = rtol)), |
| 99 | + (trunctol(; rtol), trunctol(; rtol, keep_below = true)), |
| 100 | + ) |
| 101 | + V2, C2 = @constinferred left_orth!(copy!(Ac, A), (V, C); trunc = trunc_orth) |
| 102 | + AMDGPU.@allowscalar begin |
| 103 | + N2 = @constinferred left_null!(copy!(Ac, A), N; trunc = trunc_null) |
| 104 | + end |
| 105 | + @test V2 !== V |
| 106 | + @test C2 !== C |
| 107 | + @test N2 !== C |
| 108 | + @test V2 * C2 ≈ A |
| 109 | + @test isisometric(V2) |
| 110 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 111 | + @test isisometric(N2) |
| 112 | + hV2 = collect(V2) |
| 113 | + hN2 = collect(N2) |
| 114 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 115 | + end |
| 116 | + |
| 117 | + @testset for kind in (:qr, :polar, :svd) # explicit kind kwarg |
| 118 | + m < n && kind == :polar && continue |
| 119 | + V2, C2 = @constinferred left_orth!(copy!(Ac, A), (V, C); kind = kind) |
| 120 | + @test V2 === V |
| 121 | + @test C2 === C |
| 122 | + @test V2 * C2 ≈ A |
| 123 | + @test isisometric(V2) |
| 124 | + if kind != :polar |
| 125 | + N2 = @constinferred left_null!(copy!(Ac, A), N; kind = kind) |
| 126 | + @test N2 === N |
| 127 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 128 | + @test isisometric(N2) |
| 129 | + hV2 = collect(V2) |
| 130 | + hN2 = collect(N2) |
| 131 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 132 | + end |
| 133 | + |
| 134 | + # with kind and tol kwargs |
| 135 | + if kind == :svd |
| 136 | + V2, C2 = @constinferred left_orth!( |
| 137 | + copy!(Ac, A), (V, C); kind = kind, |
| 138 | + trunc = (; atol = atol) |
| 139 | + ) |
| 140 | + AMDGPU.@allowscalar begin |
| 141 | + N2 = @constinferred left_null!( |
| 142 | + copy!(Ac, A), N; kind = kind, |
| 143 | + trunc = (; atol = atol) |
| 144 | + ) |
| 145 | + end |
| 146 | + @test V2 !== V |
| 147 | + @test C2 !== C |
| 148 | + @test N2 !== C |
| 149 | + @test V2 * C2 ≈ A |
| 150 | + @test V2' * V2 ≈ I |
| 151 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 152 | + @test isisometric(N2) |
| 153 | + hV2 = collect(V2) |
| 154 | + hN2 = collect(N2) |
| 155 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 156 | + |
| 157 | + V2, C2 = @constinferred left_orth!( |
| 158 | + copy!(Ac, A), (V, C); kind = kind, |
| 159 | + trunc = (; rtol = rtol) |
| 160 | + ) |
| 161 | + AMDGPU.@allowscalar begin |
| 162 | + N2 = @constinferred left_null!( |
| 163 | + copy!(Ac, A), N; kind = kind, |
| 164 | + trunc = (; rtol = rtol) |
| 165 | + ) |
| 166 | + end |
| 167 | + @test V2 !== V |
| 168 | + @test C2 !== C |
| 169 | + @test N2 !== C |
| 170 | + @test V2 * C2 ≈ A |
| 171 | + @test isisometric(V2) |
| 172 | + @test LinearAlgebra.norm(A' * N2) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 173 | + @test isisometric(N2) |
| 174 | + hV2 = collect(V2) |
| 175 | + hN2 = collect(N2) |
| 176 | + @test hV2 * hV2' + hN2 * hN2' ≈ I |
| 177 | + else |
| 178 | + @test_throws ArgumentError left_orth!( |
| 179 | + copy!(Ac, A), (V, C); kind = kind, |
| 180 | + trunc = (; atol = atol) |
| 181 | + ) |
| 182 | + @test_throws ArgumentError left_orth!( |
| 183 | + copy!(Ac, A), (V, C); kind = kind, |
| 184 | + trunc = (; rtol = rtol) |
| 185 | + ) |
| 186 | + @test_throws ArgumentError left_null!( |
| 187 | + copy!(Ac, A), N; kind = kind, |
| 188 | + trunc = (; atol = atol) |
| 189 | + ) |
| 190 | + @test_throws ArgumentError left_null!( |
| 191 | + copy!(Ac, A), N; kind = kind, |
| 192 | + trunc = (; rtol = rtol) |
| 193 | + ) |
| 194 | + end |
| 195 | + end |
| 196 | + end |
| 197 | +end |
| 198 | + |
| 199 | +@testset "right_orth and right_null for T = $T" for T in ( |
| 200 | + Float32, Float64, ComplexF32, |
| 201 | + ComplexF64, |
| 202 | + ) |
| 203 | + rng = StableRNG(123) |
| 204 | + m = 54 |
| 205 | + @testset for n in (37, m, 63) |
| 206 | + minmn = min(m, n) |
| 207 | + A = ROCArray(randn(rng, T, m, n)) |
| 208 | + C, Vᴴ = @constinferred right_orth(A) |
| 209 | + Nᴴ = @constinferred right_null(A) |
| 210 | + @test C isa ROCMatrix{T} && size(C) == (m, minmn) |
| 211 | + @test Vᴴ isa ROCMatrix{T} && size(Vᴴ) == (minmn, n) |
| 212 | + @test Nᴴ isa ROCMatrix{T} && size(Nᴴ) == (n - minmn, n) |
| 213 | + @test C * Vᴴ ≈ A |
| 214 | + @test isisometric(Vᴴ; side = :right) |
| 215 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 216 | + @test isisometric(Nᴴ; side = :right) |
| 217 | + hVᴴ = collect(Vᴴ) |
| 218 | + hNᴴ = collect(Nᴴ) |
| 219 | + @test hVᴴ' * hVᴴ + hNᴴ' * hNᴴ ≈ I |
| 220 | + |
| 221 | + M = LinearMap(A) |
| 222 | + CM, VMᴴ = @constinferred right_orth(M; kind = :svd) |
| 223 | + @test parent(CM) * parent(VMᴴ) ≈ A |
| 224 | + |
| 225 | + Ac = similar(A) |
| 226 | + C2, Vᴴ2 = @constinferred right_orth!(copy!(Ac, A), (C, Vᴴ)) |
| 227 | + Nᴴ2 = @constinferred right_null!(copy!(Ac, A), Nᴴ) |
| 228 | + @test C2 === C |
| 229 | + @test Vᴴ2 === Vᴴ |
| 230 | + @test Nᴴ2 === Nᴴ |
| 231 | + @test C2 * Vᴴ2 ≈ A |
| 232 | + @test isisometric(Vᴴ2; side = :right) |
| 233 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 234 | + @test isisometric(Nᴴ; side = :right) |
| 235 | + hVᴴ2 = collect(Vᴴ2) |
| 236 | + hNᴴ2 = collect(Nᴴ2) |
| 237 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ I |
| 238 | + |
| 239 | + atol = eps(real(T)) |
| 240 | + rtol = eps(real(T)) |
| 241 | + C2, Vᴴ2 = @constinferred right_orth!(copy!(Ac, A), (C, Vᴴ); trunc = (; atol = atol)) |
| 242 | + Nᴴ2 = @constinferred right_null!(copy!(Ac, A), Nᴴ; trunc = (; atol = atol)) |
| 243 | + @test C2 !== C |
| 244 | + @test Vᴴ2 !== Vᴴ |
| 245 | + @test Nᴴ2 !== Nᴴ |
| 246 | + @test C2 * Vᴴ2 ≈ A |
| 247 | + @test isisometric(Vᴴ2; side = :right) |
| 248 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 249 | + @test isisometric(Nᴴ; side = :right) |
| 250 | + hVᴴ2 = collect(Vᴴ2) |
| 251 | + hNᴴ2 = collect(Nᴴ2) |
| 252 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ I |
| 253 | + |
| 254 | + C2, Vᴴ2 = @constinferred right_orth!(copy!(Ac, A), (C, Vᴴ); trunc = (; rtol = rtol)) |
| 255 | + Nᴴ2 = @constinferred right_null!(copy!(Ac, A), Nᴴ; trunc = (; rtol = rtol)) |
| 256 | + @test C2 !== C |
| 257 | + @test Vᴴ2 !== Vᴴ |
| 258 | + @test Nᴴ2 !== Nᴴ |
| 259 | + @test C2 * Vᴴ2 ≈ A |
| 260 | + @test isisometric(Vᴴ2; side = :right) |
| 261 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 262 | + @test isisometric(Nᴴ2; side = :right) |
| 263 | + hVᴴ2 = collect(Vᴴ2) |
| 264 | + hNᴴ2 = collect(Nᴴ2) |
| 265 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ I |
| 266 | + |
| 267 | + @testset "kind = $kind" for kind in (:lq, :polar, :svd) |
| 268 | + n < m && kind == :polar && continue |
| 269 | + C2, Vᴴ2 = @constinferred right_orth!(copy!(Ac, A), (C, Vᴴ); kind = kind) |
| 270 | + @test C2 === C |
| 271 | + @test Vᴴ2 === Vᴴ |
| 272 | + @test C2 * Vᴴ2 ≈ A |
| 273 | + @test isisometric(Vᴴ2; side = :right) |
| 274 | + if kind != :polar |
| 275 | + Nᴴ2 = @constinferred right_null!(copy!(Ac, A), Nᴴ; kind = kind) |
| 276 | + @test Nᴴ2 === Nᴴ |
| 277 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 278 | + @test isisometric(Nᴴ2; side = :right) |
| 279 | + hVᴴ2 = collect(Vᴴ2) |
| 280 | + hNᴴ2 = collect(Nᴴ2) |
| 281 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ I |
| 282 | + end |
| 283 | + |
| 284 | + if kind == :svd |
| 285 | + C2, Vᴴ2 = @constinferred right_orth!( |
| 286 | + copy!(Ac, A), (C, Vᴴ); kind = kind, |
| 287 | + trunc = (; atol = atol) |
| 288 | + ) |
| 289 | + Nᴴ2 = @constinferred right_null!( |
| 290 | + copy!(Ac, A), Nᴴ; kind = kind, |
| 291 | + trunc = (; atol = atol) |
| 292 | + ) |
| 293 | + @test C2 !== C |
| 294 | + @test Vᴴ2 !== Vᴴ |
| 295 | + @test Nᴴ2 !== Nᴴ |
| 296 | + @test C2 * Vᴴ2 ≈ A |
| 297 | + @test isisometric(Vᴴ2; side = :right) |
| 298 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 299 | + @test isisometric(Nᴴ2; side = :right) |
| 300 | + hVᴴ2 = collect(Vᴴ2) |
| 301 | + hNᴴ2 = collect(Nᴴ2) |
| 302 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ I |
| 303 | + |
| 304 | + C2, Vᴴ2 = @constinferred right_orth!( |
| 305 | + copy!(Ac, A), (C, Vᴴ); kind = kind, |
| 306 | + trunc = (; rtol = rtol) |
| 307 | + ) |
| 308 | + Nᴴ2 = @constinferred right_null!( |
| 309 | + copy!(Ac, A), Nᴴ; kind = kind, |
| 310 | + trunc = (; rtol = rtol) |
| 311 | + ) |
| 312 | + @test C2 !== C |
| 313 | + @test Vᴴ2 !== Vᴴ |
| 314 | + @test Nᴴ2 !== Nᴴ |
| 315 | + @test C2 * Vᴴ2 ≈ A |
| 316 | + @test isisometric(Vᴴ2; side = :right) |
| 317 | + @test LinearAlgebra.norm(A * adjoint(Nᴴ2)) ≈ 0 atol = MatrixAlgebraKit.defaulttol(T) |
| 318 | + @test isisometric(Nᴴ2; side = :right) |
| 319 | + hVᴴ2 = collect(Vᴴ2) |
| 320 | + hNᴴ2 = collect(Nᴴ2) |
| 321 | + @test hVᴴ2' * hVᴴ2 + hNᴴ2' * hNᴴ2 ≈ diagm(ones(T, size(Vᴴ2, 2))) atol = m * n * MatrixAlgebraKit.defaulttol(T) |
| 322 | + else |
| 323 | + @test_throws ArgumentError right_orth!( |
| 324 | + copy!(Ac, A), (C, Vᴴ); kind = kind, |
| 325 | + trunc = (; atol = atol) |
| 326 | + ) |
| 327 | + @test_throws ArgumentError right_orth!( |
| 328 | + copy!(Ac, A), (C, Vᴴ); kind = kind, |
| 329 | + trunc = (; rtol = rtol) |
| 330 | + ) |
| 331 | + @test_throws ArgumentError right_null!( |
| 332 | + copy!(Ac, A), Nᴴ; kind = kind, |
| 333 | + trunc = (; atol = atol) |
| 334 | + ) |
| 335 | + @test_throws ArgumentError right_null!( |
| 336 | + copy!(Ac, A), Nᴴ; kind = kind, |
| 337 | + trunc = (; rtol = rtol) |
| 338 | + ) |
| 339 | + end |
| 340 | + end |
| 341 | + end |
| 342 | +end |
0 commit comments