@@ -177,11 +177,11 @@ for V in spacelist
177177 v, c = @constinferred left_orth (t; kind= :svd )
178178 @test v * c ≈ t
179179 @test isisometry (v)
180-
180+
181181 N = @constinferred left_null (t; kind= :svd )
182182 @test isisometry (N)
183183 @test norm (N' * t) ≈ 0 atol = 100 * eps (norm (t))
184-
184+
185185 Nᴴ = @constinferred right_null (t; kind= :svd )
186186 @test isisometry (Nᴴ; side= :right )
187187 @test norm (t * Nᴴ' ) ≈ 0 atol = 100 * eps (norm (t))
@@ -204,12 +204,12 @@ for V in spacelist
204204 for T in eltypes, t in (rand (T, V1, V1), rand (T, W, W), rand (T, W, W)' )
205205 d, v = @constinferred eig_full (t)
206206 @test t * v ≈ v * d
207-
207+
208208 d′ = LinearAlgebra. diag (d)
209209 for (c, b) in LinearAlgebra. eigvals (t)
210210 @test sort (b; by= abs) ≈ sort (d′[c]; by= abs)
211211 end
212-
212+
213213 vdv = v' * v
214214 vdv = (vdv + vdv' ) / 2
215215 @test @constinferred isposdef (vdv)
@@ -218,8 +218,7 @@ for V in spacelist
218218 d, v = @constinferred eig_trunc (t; trunc= truncrank (dim (domain (t)) ÷ 2 ))
219219 @test t * v ≈ v * d
220220 @test dim (domain (d)) ≤ dim (domain (t)) ÷ 2
221-
222-
221+
223222 t2 = (t + t' )
224223 D, V = eigen (t2)
225224 @test isisometry (V)
@@ -232,13 +231,13 @@ for V in spacelist
232231 @test isposdef (t2) == isposdef (λ)
233232 @test isposdef (t2 - λ * one (t2) + 0.1 * one (t2))
234233 @test ! isposdef (t2 - λ * one (t2) - 0.1 * one (t2))
235-
234+
236235 add! (t, t' )
237236
238237 d, v = @constinferred eigh_full (t)
239238 @test t * v ≈ v * d
240239 @test isunitary (v)
241-
240+
242241 λ = minimum (minimum (real (LinearAlgebra. diag (b))) for (c, b) in blocks (d))
243242 @test cond (v) ≈ one (real (T))
244243 @test isposdef (t) == isposdef (λ)
@@ -250,7 +249,7 @@ for V in spacelist
250249 @test dim (domain (d)) ≤ dim (domain (t)) ÷ 2
251250 end
252251 end
253-
252+
254253 @testset " Condition number and rank" begin
255254 for T in eltypes,
256255 t in (rand (T, W, W), rand (T, W, W)' ,
@@ -268,7 +267,7 @@ for V in spacelist
268267 u = unitary (T, V1 ⊗ V2, V1 ⊗ V2)
269268 @test @constinferred (cond (u)) ≈ one (real (T))
270269 @test @constinferred (rank (u)) == dim (V1 ⊗ V2)
271-
270+
272271 t = rand (T, zero (V1), W)
273272 @test rank (t) == 0
274273 t2 = rand (T, zero (V1) * zero (V2), zero (V1) * zero (V2))
0 commit comments