@@ -165,7 +165,7 @@ operation is the inverse of `insertat` in the sense that if
165165 f₂ = FusionTree {I} (f. uncoupled, f. coupled, isdual2, f. innerlines, f. vertices)
166166 return f₁, f₂
167167 elseif M === 0
168- u = leftone (f. uncoupled[1 ])
168+ u = leftunit (f. uncoupled[1 ])
169169 f₁ = FusionTree {I} ((), u, (), ())
170170 uncoupled2 = (u, f. uncoupled... )
171171 coupled2 = f. coupled
@@ -290,7 +290,7 @@ function bendright(f₁::FusionTree{I,N₁}, f₂::FusionTree{I,N₂}) where {I<
290290 # map final splitting vertex (a, b)<-c to fusion vertex a<-(c, dual(b))
291291 @assert N₁ > 0
292292 c = f₁. coupled
293- a = N₁ == 1 ? leftone (f₁. uncoupled[1 ]) :
293+ a = N₁ == 1 ? leftunit (f₁. uncoupled[1 ]) :
294294 (N₁ == 2 ? f₁. uncoupled[1 ] : f₁. innerlines[end ])
295295 b = f₁. uncoupled[N₁]
296296
@@ -362,7 +362,7 @@ function foldright(f₁::FusionTree{I,N₁}, f₂::FusionTree{I,N₂}) where {I<
362362 hasmultiplicities = FusionStyle (a) isa GenericFusion
363363 local newtrees
364364 if N₁ == 1
365- cset = (leftone (c1),) # or rightone (a)
365+ cset = (leftunit (c1),) # or rightunit (a)
366366 elseif N₁ == 2
367367 cset = (f₁. uncoupled[2 ],)
368368 else
@@ -373,7 +373,7 @@ function foldright(f₁::FusionTree{I,N₁}, f₂::FusionTree{I,N₂}) where {I<
373373 for μ in 1 : Nsymbol (c1, c2, c)
374374 fc = FusionTree ((c1, c2), c, (! isduala, false ), (), (μ,))
375375 for (fl′, coeff1) in insertat (fc, 2 , f₁)
376- N₁ > 1 && ! isone (fl′. innerlines[1 ]) && continue
376+ N₁ > 1 && ! isunit (fl′. innerlines[1 ]) && continue
377377 coupled = fl′. coupled
378378 uncoupled = Base. tail (Base. tail (fl′. uncoupled))
379379 isdual = Base. tail (Base. tail (fl′. isdual))
@@ -718,7 +718,7 @@ corresponding coefficients.
718718function elementary_trace (f:: FusionTree{I,N} , i) where {I<: Sector ,N}
719719 (N > 1 && 1 <= i <= N) ||
720720 throw (ArgumentError (" Cannot trace outputs i=$i and i+1 out of only $N outputs" ))
721- i < N || isone (f. coupled) ||
721+ i < N || isunit (f. coupled) ||
722722 throw (ArgumentError (" Cannot trace outputs i=$N and 1 of fusion tree that couples to non-trivial sector" ))
723723
724724 T = sectorscalartype (I)
@@ -731,7 +731,7 @@ function elementary_trace(f::FusionTree{I,N}, i) where {I<:Sector,N}
731731 # if trace is zero, return empty dict
732732 (b == dual (b′) && f. isdual[i] != f. isdual[j]) || return newtrees
733733 if i < N
734- inner_extended = (leftone (f. uncoupled[1 ]), f. uncoupled[1 ], f. innerlines... ,
734+ inner_extended = (leftunit (f. uncoupled[1 ]), f. uncoupled[1 ], f. innerlines... ,
735735 f. coupled)
736736 a = inner_extended[i]
737737 d = inner_extended[i + 2 ]
@@ -756,11 +756,11 @@ function elementary_trace(f::FusionTree{I,N}, i) where {I<:Sector,N}
756756 if i > 1
757757 c = f. innerlines[i - 1 ]
758758 if FusionStyle (I) isa MultiplicityFreeFusion
759- coeff *= Fsymbol (a, b, dual (b), a, c, rightone (a))
759+ coeff *= Fsymbol (a, b, dual (b), a, c, rightunit (a))
760760 else
761761 μ = f. vertices[i - 1 ]
762762 ν = f. vertices[i]
763- coeff *= Fsymbol (a, b, dual (b), a, c, rightone (a))[μ, ν, 1 , 1 ]
763+ coeff *= Fsymbol (a, b, dual (b), a, c, rightunit (a))[μ, ν, 1 , 1 ]
764764 end
765765 end
766766 if f. isdual[i]
@@ -769,7 +769,7 @@ function elementary_trace(f::FusionTree{I,N}, i) where {I<:Sector,N}
769769 push! (newtrees, f′ => coeff)
770770 return newtrees
771771 else # i == N
772- unit = leftone (b)
772+ unit = leftunit (b)
773773 if N == 2
774774 f′ = FusionTree {I} ((), unit, (), (), ())
775775 coeff = sqrtdim (b)
@@ -835,13 +835,13 @@ function artin_braid(f::FusionTree{I,N}, i; inv::Bool=false) where {I<:Sector,N}
835835 vertices = f. vertices
836836 oneT = one (sectorscalartype (I))
837837
838- if isone (uncoupled[i] ) || isone (uncoupled[i + 1 ] )
838+ if isunit (a ) || isunit (b )
839839 # braiding with trivial sector: simple and always possible
840840 inner′ = inner
841841 vertices′ = vertices
842842 if i > 1 # we also need to alter innerlines and vertices
843843 inner′ = TupleTools. setindex (inner,
844- inner_extended[isone (a) ? (i + 1 ) : (i - 1 )],
844+ inner_extended[isunit (a) ? (i + 1 ) : (i - 1 )],
845845 i - 1 )
846846 vertices′ = TupleTools. setindex (vertices′, vertices[i], i - 1 )
847847 vertices′ = TupleTools. setindex (vertices′, vertices[i - 1 ], i)
0 commit comments