@@ -39,7 +39,8 @@ for V in spacelist
3939 TensorKit. PolarViaSVD (TensorKit. LAPACK_DivideAndConquer ()),
4040 TensorKit. LAPACK_QRIteration (),
4141 TensorKit. LAPACK_DivideAndConquer ())
42- (codomain (t) ≾ domain (t)) && alg isa TensorKit. PolarViaSVD && continue
42+ (codomain (t) ≾ domain (t)) && alg isa TensorKit. PolarViaSVD &&
43+ continue
4344 Q, R = @constinferred leftorth (t; alg= alg)
4445 @test isisometry (Q)
4546 @test Q * R ≈ t
@@ -60,7 +61,8 @@ for V in spacelist
6061 TensorKit. PolarViaSVD (TensorKit. LAPACK_DivideAndConquer ()),
6162 TensorKit. LAPACK_QRIteration (),
6263 TensorKit. LAPACK_DivideAndConquer ())
63- (domain (t) ≾ codomain (t)) && alg isa TensorKit. PolarViaSVD && continue
64+ (domain (t) ≾ codomain (t)) && alg isa TensorKit. PolarViaSVD &&
65+ continue
6466 L, Q = @constinferred rightorth (t; alg= alg)
6567 @test isisometry (Q; side= :right )
6668 @test L * Q ≈ t
@@ -80,28 +82,28 @@ for V in spacelist
8082 @test isisometry (V; side= :right )
8183 @test U * S * V ≈ t
8284
83- s = LinearAlgebra. svdvals (t)
85+ s = LinearAlgebra. svdvals (t)
8486 s′ = LinearAlgebra. diag (S)
8587 for (c, b) in s
8688 @test b ≈ s′[c]
8789 end
88- s = LinearAlgebra. svdvals (t' )
90+ s = LinearAlgebra. svdvals (t' )
8991 s′ = LinearAlgebra. diag (S' )
9092 for (c, b) in s
9193 @test b ≈ s′[c]
9294 end
9395 end
9496 @testset " cond and rank" begin
95- d1 = dim (codomain (t))
96- d2 = dim (domain (t))
97+ d1 = dim (codomain (t))
98+ d2 = dim (domain (t))
9799 @test rank (t) == min (d1, d2)
98- M = leftnull (t)
100+ M = leftnull (t)
99101 @test rank (M) + rank (t) == d1
100- t3 = unitary (T, V1 ⊗ V2, V1 ⊗ V2)
102+ t3 = unitary (T, V1 ⊗ V2, V1 ⊗ V2)
101103 @test cond (t3) ≈ one (real (T))
102104 @test rank (t3) == dim (V1 ⊗ V2)
103- t4 = randn (T, V1 ⊗ V2, V1 ⊗ V2)
104- t4 = (t4 + t4' ) / 2
105+ t4 = randn (T, V1 ⊗ V2, V1 ⊗ V2)
106+ t4 = (t4 + t4' ) / 2
105107 vals = LinearAlgebra. eigvals (t4)
106108 λmax = maximum (s -> maximum (abs, s), values (vals))
107109 λmin = minimum (s -> minimum (abs, s), values (vals))
0 commit comments