|
| 1 | +struct FusionTreeBlock{I,N₁,N₂,F<:FusionTreePair{I,N₁,N₂}} |
| 2 | + trees::Vector{F} |
| 3 | +end |
| 4 | + |
| 5 | +function FusionTreeBlock(uncoupled::Tuple{NTuple{N₁,I},NTuple{N₂,I}}, |
| 6 | + isdual::Tuple{NTuple{N₁,Bool},NTuple{N₂,Bool}}) where {I<:Sector,N₁,N₂} |
| 7 | + F₁ = fusiontreetype(I, N₁) |
| 8 | + F₂ = fusiontreetype(I, N₂) |
| 9 | + trees = Vector{Tuple{F₁,F₂}}(undef, 0) |
| 10 | + |
| 11 | + cleft = N₁ == 0 ? (one(I),) : ⊗(uncoupled[1]...) |
| 12 | + cright = N₂ == 0 ? (one(I),) : ⊗(uncoupled[2]...) |
| 13 | + cs = sort!(collect(intersect(cleft, cright))) |
| 14 | + for c in cs |
| 15 | + for f₁ in fusiontrees(uncoupled[1], c, isdual[1]), |
| 16 | + f₂ in fusiontrees(uncoupled[2], c, isdual[2]) |
| 17 | + |
| 18 | + push!(trees, (f₁, f₂)) |
| 19 | + end |
| 20 | + end |
| 21 | + return FusionTreeBlock(trees) |
| 22 | +end |
| 23 | + |
| 24 | +Base.@constprop :aggressive function Base.getproperty(block::FusionTreeBlock, prop::Symbol) |
| 25 | + if prop === :uncoupled |
| 26 | + f₁, f₂ = first(block.trees) |
| 27 | + return f₁.uncoupled, f₂.uncoupled |
| 28 | + elseif prop === :isdual |
| 29 | + f₁, f₂ = first(block.trees) |
| 30 | + return f₁.isdual, f₂.isdual |
| 31 | + else |
| 32 | + return getfield(block, prop) |
| 33 | + end |
| 34 | +end |
| 35 | + |
| 36 | +Base.propertynames(::FusionTreeBlock, private::Bool=false) = (:trees, :uncoupled, :isdual) |
| 37 | + |
| 38 | +sectortype(::Type{<:FusionTreeBlock{I}}) where {I} = I |
| 39 | +numout(fs::FusionTreeBlock) = numout(typeof(fs)) |
| 40 | +numout(::Type{<:FusionTreeBlock{I,N₁}}) where {I,N₁} = N₁ |
| 41 | +numin(fs::FusionTreeBlock) = numin(typeof(fs)) |
| 42 | +numin(::Type{<:FusionTreeBlock{I,N₁,N₂}}) where {I,N₁,N₂} = N₂ |
| 43 | +numind(fs::FusionTreeBlock) = numind(typeof(fs)) |
| 44 | +numind(::Type{T}) where {T<:FusionTreeBlock} = numin(T) + numout(T) |
| 45 | + |
| 46 | +fusiontrees(block::FusionTreeBlock) = block.trees |
| 47 | +Base.length(block::FusionTreeBlock) = length(fusiontrees(block)) |
| 48 | + |
| 49 | +# Manipulations |
| 50 | +# ------------- |
| 51 | +function transformation_matrix(transform, dst::FusionTreeBlock{I}, |
| 52 | + src::FusionTreeBlock{I}) where {I} |
| 53 | + U = zeros(sectorscalartype(I), length(dst), length(src)) |
| 54 | + indexmap = Dict(f => ind for (ind, f) in enumerate(fusiontrees(dst))) |
| 55 | + for (col, f) in enumerate(fusiontrees(src)) |
| 56 | + for (f′, c) in transform(f) |
| 57 | + row = indexmap[f′] |
| 58 | + U[row, col] = c |
| 59 | + end |
| 60 | + end |
| 61 | + return U |
| 62 | +end |
| 63 | + |
| 64 | +function bendright(src::FusionTreeBlock) |
| 65 | + uncoupled_dst = (TupleTools.front(src.uncoupled[1]), |
| 66 | + (src.uncoupled[2]..., dual(src.uncoupled[1][end]))) |
| 67 | + isdual_dst = (TupleTools.front(src.isdual[1]), |
| 68 | + (src.isdual[2]..., !(src.isdual[1][end]))) |
| 69 | + dst = FusionTreeBlock(uncoupled_dst, isdual_dst) |
| 70 | + |
| 71 | + U = transformation_matrix(bendright, dst, src) |
| 72 | + return dst, U |
| 73 | +end |
| 74 | + |
| 75 | +# TODO: verify if this can be computed through an adjoint |
| 76 | +function bendleft(src::FusionTreeBlock) |
| 77 | + uncoupled_dst = ((src.uncoupled[1]..., dual(src.uncoupled[2][end])), |
| 78 | + TupleTools.front(src.uncoupled[2])) |
| 79 | + isdual_dst = ((src.isdual[1]..., !(src.isdual[2][end])), |
| 80 | + TupleTools.front(src.isdual[2])) |
| 81 | + dst = FusionTreeBlock(uncoupled_dst, isdual_dst) |
| 82 | + |
| 83 | + U = transformation_matrix(bendleft, dst, src) |
| 84 | + return dst, U |
| 85 | +end |
| 86 | + |
| 87 | +function foldright(src::FusionTreeBlock) |
| 88 | + uncoupled_dst = (Base.tail(src.uncoupled[1]), |
| 89 | + (dual(first(src.uncoupled[1])), src.uncoupled[2]...)) |
| 90 | + isdual_dst = (Base.tail(src.isdual[1]), |
| 91 | + (!first(src.isdual[1]), src.isdual[2]...)) |
| 92 | + dst = FusionTreeBlock(uncoupled_dst, isdual_dst) |
| 93 | + |
| 94 | + U = transformation_matrix(foldright, dst, src) |
| 95 | + return dst, U |
| 96 | +end |
| 97 | + |
| 98 | +# TODO: verify if this can be computed through an adjoint |
| 99 | +function foldleft(src::FusionTreeBlock) |
| 100 | + uncoupled_dst = ((dual(first(src.uncoupled[2])), src.uncoupled[1]...), |
| 101 | + Base.tail(src.uncoupled[2])) |
| 102 | + isdual_dst = ((!first(src.isdual[2]), src.isdual[1]...), |
| 103 | + Base.tail(src.isdual[2])) |
| 104 | + dst = FusionTreeBlock(uncoupled_dst, isdual_dst) |
| 105 | + |
| 106 | + U = transformation_matrix(foldleft, dst, src) |
| 107 | + return dst, U |
| 108 | +end |
| 109 | + |
| 110 | +function cycleclockwise(src::FusionTreeBlock) |
| 111 | + if numout(src) > 0 |
| 112 | + tmp, U₁ = foldright(src) |
| 113 | + dst, U₂ = bendleft(tmp) |
| 114 | + else |
| 115 | + tmp, U₁ = bendleft(src) |
| 116 | + dst, U₂ = foldright(tmp) |
| 117 | + end |
| 118 | + return dst, U₂ * U₁ |
| 119 | +end |
| 120 | + |
| 121 | +function cycleanticlockwise(src::FusionTreeBlock) |
| 122 | + if numin(src) > 0 |
| 123 | + tmp, U₁ = foldleft(src) |
| 124 | + dst, U₂ = bendright(tmp) |
| 125 | + else |
| 126 | + tmp, U₁ = bendright(src) |
| 127 | + dst, U₂ = foldleft(tmp) |
| 128 | + end |
| 129 | + return dst, U₂ * U₁ |
| 130 | +end |
| 131 | + |
| 132 | +@inline function repartition(src::FusionTreeBlock, N::Int) |
| 133 | + @assert 0 <= N <= numind(src) |
| 134 | + return _recursive_repartition(src, Val(N)) |
| 135 | +end |
| 136 | + |
| 137 | +function _repartition_type(I, N, N₁, N₂) |
| 138 | + return Tuple{FusionTreeBlock{I,N,N₁ + N₂ - N},Matrix{sectorscalartype(I)}} |
| 139 | +end |
| 140 | +function _recursive_repartition(src::FusionTreeBlock{I,N₁,N₂}, |
| 141 | + ::Val{N})::_repartition_type(I, N, N₁, N₂) where {I,N₁,N₂,N} |
| 142 | + if N == N₁ |
| 143 | + dst = src |
| 144 | + U = zeros(sectorscalartype(I), length(dst), length(src)) |
| 145 | + copyto!(U, LinearAlgebra.I) |
| 146 | + return dst, U |
| 147 | + end |
| 148 | + |
| 149 | + N == N₁ - 1 && return bendright(src) |
| 150 | + N == N₁ + 1 && return bendleft(src) |
| 151 | + |
| 152 | + tmp, U₁ = N < N₁ ? bendright(src) : bendleft(src) |
| 153 | + dst, U₂ = _recursive_repartition(tmp, Val(N)) |
| 154 | + return dst, U₂ * U₁ |
| 155 | +end |
| 156 | + |
| 157 | +function Base.transpose(src::FusionTreeBlock, p::Index2Tuple{N₁,N₂}) where {N₁,N₂} |
| 158 | + N = N₁ + N₂ |
| 159 | + @assert numind(src) == N |
| 160 | + p′ = linearizepermutation(p..., numout(src), numin(src)) |
| 161 | + @assert iscyclicpermutation(p′) |
| 162 | + return _fstranspose((src, p)) |
| 163 | +end |
| 164 | + |
| 165 | +const _FSTransposeKey{I,N₁,N₂} = Tuple{<:FusionTreeBlock{I},Index2Tuple{N₁,N₂}} |
| 166 | + |
| 167 | +@cached function _fstranspose(key::_FSTransposeKey{I,N₁,N₂})::Tuple{FusionTreeBlock{I,N₁, |
| 168 | + N₂}, |
| 169 | + Matrix{sectorscalartype(I)}} where {I, |
| 170 | + N₁, |
| 171 | + N₂} |
| 172 | + src, (p1, p2) = key |
| 173 | + |
| 174 | + N = N₁ + N₂ |
| 175 | + p = linearizepermutation(p1, p2, numout(src), numin(src)) |
| 176 | + |
| 177 | + dst, U = repartition(src, N₁) |
| 178 | + length(p) == 0 && return dst, U |
| 179 | + i1 = findfirst(==(1), p)::Int |
| 180 | + i1 == 1 && return dst, U |
| 181 | + |
| 182 | + Nhalf = N >> 1 |
| 183 | + while 1 < i1 ≤ Nhalf |
| 184 | + dst, U_tmp = cycleanticlockwise(dst) |
| 185 | + U = U_tmp * U |
| 186 | + i1 -= 1 |
| 187 | + end |
| 188 | + while Nhalf < i1 |
| 189 | + dst, U_tmp = cycleclockwise(dst) |
| 190 | + U = U_tmp * U |
| 191 | + i1 = mod1(i1 + 1, N) |
| 192 | + end |
| 193 | + |
| 194 | + return dst, U |
| 195 | +end |
| 196 | + |
| 197 | +function CacheStyle(::typeof(_fstranspose), k::_FSTransposeKey{I}) where {I} |
| 198 | + if FusionStyle(I) == UniqueFusion() |
| 199 | + return NoCache() |
| 200 | + else |
| 201 | + return GlobalLRUCache() |
| 202 | + end |
| 203 | +end |
| 204 | + |
| 205 | +function artin_braid(src::FusionTreeBlock{I,N,0}, i; inv::Bool=false) where {I,N} |
| 206 | + 1 <= i < N || |
| 207 | + throw(ArgumentError("Cannot swap outputs i=$i and i+1 out of only $N outputs")) |
| 208 | + |
| 209 | + uncoupled = src.uncoupled[1] |
| 210 | + uncoupled′ = TupleTools.setindex(uncoupled, uncoupled[i + 1], i) |
| 211 | + uncoupled′ = TupleTools.setindex(uncoupled′, uncoupled[i], i + 1) |
| 212 | + isdual = src.isdual[1] |
| 213 | + isdual′ = TupleTools.setindex(isdual, isdual[i], i + 1) |
| 214 | + isdual′ = TupleTools.setindex(isdual′, isdual[i + 1], i) |
| 215 | + dst = FusionTreeBlock((uncoupled′, ()), (isdual′, ())) |
| 216 | + |
| 217 | + # TODO: do we want to rewrite `artin_braid` to take double trees instead? |
| 218 | + U = transformation_matrix(dst, src) do (f₁, f₂) |
| 219 | + return ((f₁′, f₂) => c for (f₁′, c) in artin_braid(f₁, i; inv)) |
| 220 | + end |
| 221 | + return dst, U |
| 222 | +end |
| 223 | + |
| 224 | +function braid(src::FusionTreeBlock{I,N,0}, p::NTuple{N,Int}, |
| 225 | + levels::NTuple{N,Int}) where {I,N} |
| 226 | + TupleTools.isperm(p) || throw(ArgumentError("not a valid permutation: $p")) |
| 227 | + |
| 228 | + if FusionStyle(I) isa UniqueFusion && BraidingStyle(I) isa SymmetricBraiding |
| 229 | + uncoupled′ = TupleTools._permute(src.uncoupled[1], p) |
| 230 | + isdual′ = TupleTools._permute(src.isdual[1], p) |
| 231 | + dst = FusionTreeBlock(uncoupled′, isdual′) |
| 232 | + U = transformation_matrix(dst, src) do (f₁, f₂) |
| 233 | + return ((f₁′, f₂) => c for (f₁, c) in braid(f₁, p, levels)) |
| 234 | + end |
| 235 | + else |
| 236 | + dst, U = repartition(src, N) # TODO: can we avoid this? |
| 237 | + for s in permutation2swaps(p) |
| 238 | + inv = levels[s] > levels[s + 1] |
| 239 | + dst, U_tmp = artin_braid(dst, s; inv) |
| 240 | + U = U_tmp * U |
| 241 | + end |
| 242 | + end |
| 243 | + return dst, U |
| 244 | +end |
| 245 | + |
| 246 | +function braid(src::FusionTreeBlock{I}, p::Index2Tuple{N₁,N₂}, |
| 247 | + levels::Index2Tuple) where {I,N₁,N₂} |
| 248 | + @assert numind(src) == N₁ + N₂ |
| 249 | + @assert numout(src) == length(levels[1]) && numin(src) == length(levels[2]) |
| 250 | + @assert TupleTools.isperm((p[1]..., p[2]...)) |
| 251 | + return _fsbraid((src, p, levels)) |
| 252 | +end |
| 253 | + |
| 254 | +const _FSBraidKey{I,N₁,N₂} = Tuple{<:FusionTreeBlock{I},Index2Tuple{N₁,N₂},Index2Tuple} |
| 255 | + |
| 256 | +@cached function _fsbraid(key::_FSBraidKey{I,N₁,N₂})::Tuple{FusionTreeBlock{I,N₁,N₂}, |
| 257 | + Matrix{sectorscalartype(I)}} where {I, |
| 258 | + N₁, |
| 259 | + N₂} |
| 260 | + src, (p1, p2), (l1, l2) = key |
| 261 | + |
| 262 | + p = linearizepermutation(p1, p2, numout(src), numin(src)) |
| 263 | + levels = (l1..., reverse(l2)...) |
| 264 | + |
| 265 | + dst, U = repartition(src, numind(src)) |
| 266 | + |
| 267 | + if FusionStyle(I) isa UniqueFusion && BraidingStyle(I) isa SymmetricBraiding |
| 268 | + uncoupled′ = TupleTools._permute(dst.uncoupled[1], p) |
| 269 | + isdual′ = TupleTools._permute(dst.isdual[1], p) |
| 270 | + |
| 271 | + dst′ = FusionTreeBlock(uncoupled′, isdual′) |
| 272 | + U_tmp = transformation_matrix(dst′, dst) do (f₁, f₂) |
| 273 | + return ((f₁′, f₂) => c for (f₁, c) in braid(f₁, p, levels)) |
| 274 | + end |
| 275 | + dst = dst′ |
| 276 | + U = U_tmp * U |
| 277 | + else |
| 278 | + for s in permutation2swaps(p) |
| 279 | + inv = levels[s] > levels[s + 1] |
| 280 | + dst, U_tmp = artin_braid(dst, s; inv) |
| 281 | + U = U_tmp * U |
| 282 | + end |
| 283 | + end |
| 284 | + |
| 285 | + if N₂ == 0 |
| 286 | + return dst, U |
| 287 | + else |
| 288 | + dst, U_tmp = repartition(dst, N₁) |
| 289 | + U = U_tmp * U |
| 290 | + return dst, U |
| 291 | + end |
| 292 | +end |
| 293 | + |
| 294 | +function CacheStyle(::typeof(_fsbraid), k::_FSBraidKey{I}) where {I} |
| 295 | + if FusionStyle(I) isa UniqueFusion |
| 296 | + return NoCache() |
| 297 | + else |
| 298 | + return GlobalLRUCache() |
| 299 | + end |
| 300 | +end |
| 301 | + |
| 302 | +function permute(src::FusionTreeBlock{I}, p::Index2Tuple) where {I} |
| 303 | + @assert BraidingStyle(I) isa SymmetricBraiding |
| 304 | + levels1 = ntuple(identity, numout(src)) |
| 305 | + levels2 = numout(src) .+ ntuple(identity, numin(src)) |
| 306 | + return braid(src, p, (levels1, levels2)) |
| 307 | +end |
0 commit comments