@@ -124,7 +124,7 @@ _Tensor{T, A}(::UndefInitializer, V::TensorSpace) where {T, A} = _TensorMap{T, A
124124 TensorMap{T}(data::DenseVector{T}, codomain ← domain)
125125 TensorMap{T}(data::DenseVector{T}, domain → codomain)
126126
127- Constrct a `TensorMap` from the given raw data.
127+ Construct a `TensorMap` from the given raw data.
128128"""
129129TensorMap {T} (data:: DenseVector{T} , V:: TensorMapSpace ) where {T} =
130130 _TensorMap {T, typeof(data)} (data, V)
@@ -136,7 +136,7 @@ TensorMap{T}(data::DenseVector{T}, codomain::TensorSpace, domain::TensorSpace) w
136136 (TensorMap{T, S, N₁, N₂, A} where {S, N₁, N₂})(data::DenseVector{T}, codomain ← domain) where {T, A}
137137 (TensorMap{T, S, N₁, N₂, A} where {S, N₁, N₂})(data::DenseVector{T}, domain → codomain) where {T, A}
138138
139- Constrct a `TensorMap` from the given raw data.
139+ Construct a `TensorMap` from the given raw data.
140140"""
141141function _TensorMap {T, A} (data:: DenseVector{T} , V:: TensorMapSpace ) where {T, A}
142142 length (data) == dim (V) || throw (DimensionMismatch (" invalid length of data" ))
@@ -180,7 +180,7 @@ Here, `data` can be specified in three ways:
1801803) `data` can be an `AbstractArray` of rank `N₁ + N₂` with a size matching that of the domain
181181 and codomain spaces, i.e. `size(data) == (dims(codomain)..., dims(domain)...)`
182182
183- In case 2 and 3, the `TensorMap` constructor will reconstruct the tensor data such that the
183+ In cases 2 and 3, the `TensorMap` constructor will reconstruct the tensor data such that the
184184resulting tensor `t` satisfies `data == convert(Array, t)`, up to an error specified by `tol`.
185185For the case where `sectortype(S) == Trivial` and `data isa DenseArray`, the `data` array is
186186simply reshaped into a vector and used as in case 1 so that the memory will still be shared.
0 commit comments